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Glossary

The principal symbols used in this report are defined below. In many cases different

subscripts are given to an existing symbol to reflect the particular condition considered.

Since this modification is usually obvious, the resulting symbol may not be included here.
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Chapter 1

Introduction

In recent years considerable effort has been devoted to the analysis and application of
time-frequency distributions, for example, [1], [2] and the references listed therein. This type
of signal representation characterizes signals over the time-frequency plane. Ideally, it gives
a temporal localization of a signal’s spectral components and combines time-domain and
frequency-domain analyses. The time-frequency correlation function [3] and the Wigner-
Ville distribution [4] belong to the class of quadratic time-frequency distributions. The
magnitude square of a time-frequency correlation function is the ambiguity function [5]. This
work considers several important issues arising with application of the ambiguity function

and Wigner-Ville distribution to radar signal detection and estimation. The analysis is from

“a radar receiver structure standpoint.

It is shown in the literature [6)-[10] that a receiver based on the Wigner-Ville distribution
presents an alternative to the conventional receiver. A conventional receiver is built in such
a manner that it performs matched-filtering of the received signal. It is proposed that the
receiver be built in such a manner that it performs matched-filtering of the Wigner-Ville
distribution of the received signal, i.e., the Wigner-Ville distribution of the reference signal
is matched to the Wigner-Ville distribution of the received signal. This alternative not

only retains the optimality but also possesses other merits. For example, the receiver based




on the Wigner-Ville distribution will enable the estimation of unknown parameters when
the problem is not completely specified. In addition, noise suppression using time-variant
filtering in such receivers, when the signal waveshape is unknown, is more effective [7]. It
has also been proposed that the optimum receiver can be built based on the time-frequency
correlation function [11]. This receiver is computationally more tractable for linear fm signals.
However, the proposed forms of the above alternative receivers still suffer from the drawback
that the test statistic is calculated inefficiently since it is calculated point by point in the
hypothesized delay-Doppler plane.

While digital processing is the trend in practice, research efforts devoted to the subject of
finding a better structure for the receiver have been mostly addressed to the continuous case.
In the work that considered or utilized discrete signals, for example, [13] and [9], the optimal
form of the receiver was either not of concern or not successfully derived, although the discrete
Wigner-Ville distribution itself has received a lot of attention [13]-[15]. It appears that
aliasing effects are the major hindrance to the development of the optimum discrete receiver.
Therefore, a receiver based on the discrete Wigner-Ville distribution, which allows a more
efficient computation of the test statistic has yet to be derived. Furthermore, the possibilities
of implementing receivers based on other types of discrete time-frequency distributions still
need to be explored.

Since discrete receivers are in fact implemented with digital devices of finite register
length, the signals processed are quantized and the arithmetic performed are of finite preci-
sion. The effects of quantization and finite precision arithmetic can be viewed ‘as introducing
additional noise sources. Therefore, an assessment of how much more noise will be intro-
duced in the discrete time-frequency distribution based receivers is needed to complete the
analysis for such receivers.

This report is organized as follows. In the first section of this chapter, we derive the

target model assumed throughout the entire work. In Section 2 of this chapter, we present




the derivation of the ambiguity function from the basic principles of detection and estimation
theory to give a better understanding of its role in radar applications. In Section 3 of this
chapter, we introduce the Wigner-Ville distribution and derive some of its properties pertain-
ing to the development of alternative structures for the continuous signal optimum receiver.
In concluding this chapter, we discuss the advantages of a time-frequency formulation of the
optimum receiver.

Chapter 2 is devoted to derivation of various versions of the discrete ambiguity function
and Wigner-Ville distribution. This chapter starts with a review of the problem of radar
detection and estimation using sampled signals. This analysis will serve as a basis for building
the optimum discrete receiver. As a direct result, it shows the manner in which the discrete
ambiguity function arises from the conventional optimum discrete receiver. Then, to prevent
degradation of receiver performance we consider the sampling criteria needed to ensure that
aliasing does not occur with regard to the discrete ambiguity function. Also, we propose
an interpolation formula which is simpler than those found in the references to transform
between the discrete and continuous ambiguity function. Attention is then turned to a review
of derivations of various versions of the discrete Wigner-Ville distribution. Sampling criteria
and interpolation formulas are studied. A new interpolation formula that is simpler than the
one found in the references is also derived for the discrete Wigner-Ville distribution. The
interpolation formulas pfoposed in this work are restrictive in the sense that they can only
be used to recover the alias-free portions of the respective time-frequency distributions. The
interpolation formulas are considered only for the sake of completeness, and are not needed
for the optimum receiver.

In Chapter 3, we consider a variety of alternative realizations to the optimum discrete
receiver. Derivation of the optimum discrete Wigner-Ville distribution based receiver is pre-
sented and a technique for eliminating undesired aliasing is introduced. Then we consider a

second implementation of the optimum receiver based on the discrete time-frequency auto-




correlation function whose squared magnitude is the ambiguity function; this latter method
has computational advantages over the one based on the discrete Wigner-Ville distribution.

Having derived various forms of the optimum discrete receiver, we proceed in Chapter
4 to analyze quantization effect in these receivers. The result is useful for analyzing the
computational error when calculating with finite precision arithmetic the discrete ambiguity
function, time-frequency correlation function, and Wigner-Ville distribution.

Finally, in Chapter 5 we present a summary and discussion of results developed herein.

1.1 Slowly Fluctuating Point Target

Ambiguity functions are typically derived assuming a slowly fluctuating point target.
The model associated with such a target is developed here.

Assume a target has scatterers distributed over the range interval (R;, Ry), in the prop-
agation direction of an electromagnetic pulse. Let ¢; denote the instant at which the leading
edge of the pulse reaches range R; where i = 1,2. We assume the time origin to correspond
to the instant at which the leading edge of the pulse appears at the transmitting antenna. If
T denotes the time duration of the transmitted pulse, we say that the target can be modeled
as a point target provided

th—t, < T, | (1.1)

or equivalently,

R, — Ry < n) (1.2)

where n is the number of complete cycles of the carrier in the transmitted pulse, and X is
the wavelength. It should be noted that, if the transmitted waveform consists of a sequence
of several pulses, n still refers to the number of carrier cycles in one pulse. For convenience,

some people use the more restrictive condition

R,— Ry < A (1.3)
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in order to define a point target.
To examine the significance of the term “slowly fluctuating”, assume that the transmitted

pulse is given by
sz (t) \/_Re{\/— (t) exp(j2m fut )} (1.4)

where Re{-} denotes the real part operation, §(t) is the complex envelope of the transmitted

pulse, and f, is the carrier frequency. Let the complex envelope be normalized such that

/°° 5% dt = 1. (1.5)
-o0
Then, the energy of the transmitted signal is equal to E;.

For a monostatic radar, assume that a point target is located at range R, with radial
velocity V,. Let the point target consist of a rough surface with K scatterers. The received

waveform due to the reflection from the ith scatterer can be approximated by [5]

= VaRe { /B, exp(j0)3 ~ m) eolitafe + o)t —m))}  (16)

where ¢; and 6; denote the attenuation and phase, respectively, incurred in the reflection

process, 7, = 2R, /c denotes the round-trip time delay and

2V,
Jp. =

(1.7)

is the shift in the carrier frequency due to radial velocity of the target. In this expre_ssion fp.
is called the Doppler shift. Summing the returns from the K scatterers, the total received
waveform is

K

i=1

K

 VaRe{\/B: S x| st - ) exliza(se + o)t - 7))

= VERe {\/Bibi(t - 7.) explizn(fe + fo.)(t = 7))} (1.8

where the operations of summation and real part have been interchanged and

K K
b=7 giexp(jbi) = Zﬁi- (1.9)

=1




Assuming that the complex random numbers g; are statistically independent, that none of the
scatterers are dominant and that K is sufficiently large, we can use a central limit theorem
argument to conclude that b is a zero-mean complex Gaussian random variable. It follows
that |b| is a Rayleigh distributed random variable and the phase of bis a uniformly distributed
random variable. Absorbing the constant factors exp(—j2 fp,7,) and exp(—j2x f.7,) into

the phase component of b, the total received signal becomes
sr(t) = ﬁRe{ Ebs(t — ra) explj2n(f. + fDa)t]} . (1.10)

The point target is defined to be slowly fluctuating provided that b remains constant while
the target is illuminated by the transmitted pulse of duration 7. Having defined what is
meant by a slowly fluctuating point target, we now show how the ambiguity function arises

in the radar detection and parameter estimation problems.

1.2 Ambiguity Function

In detection problems, we are interested in determining whether a slowly fluctuating

point target, at range R with radial velocity V, is located at the point
2R 2V
(m = == fow = Tﬂ) (1.11)

in the delay-Doppler plane. In the absence of a target, the complex envelope of the received

waveform is assumed to be
Ft)=nt), e <t<tg+T (1.12)

where 71(t) denotes the complex envelope of a Gaussian white noise process. On the other
hand, if a slowly fluctuating point target is located at the point (7g, fp, ) in the delay-Doppler

plane, the complex envelope of the received waveform is

7(t) = v/ Eb3(t — 1) exp(j2r fp t) + 7i(t), T <t <71 +T. (1.13)

6




Hence, given the two hypotheses

Ho: #(t)=n(t)

#(1) = /Eib : . <t<rg+T 1.14
Hy: #(t) = VEbS(t - ma)exp(i2nfp,t) +a(t) M =ISTT (1.14)

we wish to determine the Neyman-Pearson receiver, i.e., the receiver that maximizes the de-
tection probability for a specified false alarm probability when detecting a slowly fluctuating
point target at the hypothesized point (7x, fp,) in the delay-Doppler plane.

For this purpose, it is convenient to expand #(t) in a Karhunen-Loeve expansion as given
by

7F0:(t), e <t< Ty +T. (1.15)

-
il
-

M

F(t) =
Because b is a complex Gaussian random variable and 7i(t) is a complex white Gaussian

random process, the coefficients

Tg+T .
7 = / RO () dt (1.16)
TH

are statistically independent complex Gaussian random variables. In addition, since the
noise is white, the basis functions &),-(t) can be chosen from any set which is complete and

orthonormal over the interval 7y < t < 7y + T'. For convenience, let the first basis function

be

&,(t) = 5(t — i) exp(j27 fpyt)- (1.17)

The first coefficient in the expansion of 7(t) is then

F —/T'”T F(8)5*(t — i) exp(—j2n fogt)dt = | ™ o (1.18)
1= - H)€Xpl—] Dy = mb+ﬁl:ﬂl :
where
Ta+T
fiy = / T R()E (t — 7a) exp(—j2 fpgt)dt (1.19)
TH

is the first coefficient in the Karhunen-Loeve expansion of the complex white noise process.
Let

E [|iuf?] = o2 and E [[B?] = 207. | (1.20)

7




It follows that the conditional probability density functions of #; are given by

~ 1 R
p’FIIHo(RlIHO) = iy €Xp (“‘I 012| ) (1.21)
and
” _ 1 |Ry|?
Pr|H, (R1|H1) - 7!'(20’?Et + ‘772;) exp ( 20'1?Et T 0_% . (1.22)

The remaining orthonormal functions in the basis set can be selected in any convenient

manner. For 7 > 1, the ith coefficient in the Karhunen-Loeve expansion of 7#(t) is

. (@ Hy |
r,—{ﬁi g i ] (1.23)

where 7; is the ith coefficient in the Karhunen-Loeve expansion of #(t). Since 7i(t) is a
complex Gaussian white noise process, 7i;, ¢ > 1, is statistically independent of 7;. Also,
by assumption, 7; is statistically independent of 5. Thus, 7;, ¢ > 1, contains no information
either about the target return or the noise coefficient 7i,. It follows that 7 is a sufficient

statistic. The log likelihood ratio is given by

In [PﬁlHl(RllHl) n ( ol ) 202E,
iy o (R1|Ho) 202E; + 02 02(202E; + o2)

Because the constants can be combined with the threshold, the Neyman-Pearson receiver

.12
]

(1.24)

performs the likelihood ratio test

Hy
T: (1.25)
Hy
where the threshold « is selected so as to achieve a specified false alarm probability.
The above test maximizes the detection probability under a false alarm probability con-
straint assuming that a slowly fluctuating point target is located at the point (7y, fp,) in

the delay-Doppler plane. However, the target may actually be located at the point (74, fp,)-

The complex envelope of the received waveform is then

7(t) = \/ E:b3(t — 7,) exp(j27 fp,t) + 7(2). (1.26)

8




-

Hence,

T = / *(t — ) exp[—j27(fp, — fp.)t)dt
Ty+T
= \/_ / 3(t — 7,)8%(t — r) exp(—j2m fp,t)dt
TH+T .‘
+/ *(t — ) exp(—j27 fp,t)dt. (1.27)
It follows that

~ 12 712 a+T o . 2
il = Bb2 | [ 8(t = )3 (¢ = ) expl=52n(f, — fo. )il

TH

+{terms involving 7i(t)}. (1.28)

Excluding the noise terms and the multiplicative factor E.|bB|?, the ambiguity function of 5()

is defined to be

Ta+T 2
/T 3(t — 7,)8"(t — ) exp|—j27(fpy — fp.)t]dt

H

0§(TH7Ta)fDH7fDa) = (129)

Because 3(t) is zero outside the interval 0 < ¢ < T, the range of integration may be extended

from —oo to co. Hence, the ambiguity function is commonly expressed as

HS(TH’ Tas fDH; fDa) = l/;o:o §(t - Ta)g*(t - TH) eXP[_jZW(fDH - fDa)t]dt :

(1.30)

The function inside the magnitude signs is defined as the time-frequency autocorrelation

function of 3(¢), which will be denoted as ¢;(7w, 7o, fDy, fDa),

[e o]

¢5(TH, Tas fDys fDa) = / 3(t — 72)8"(t — 7o) exp[—327(fpy — fp,)t]dt. (1.31)

With a direct application of the generalized Parseval’s theorem, it is also possible to
express the ambiguity function in the frequency-domain. The generalized Parseval’s theorem
is given as follows. If $;(f) and S;(f) denote the Fourier transform of the two complex signals

31(t) and $2(t), respectively, then

[” awsi= [~ (050N (132
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The above relationship can be derived by a substitution of the definition of the Fourier
transform to its right-hand side. Thus, denoting S(f) as the Fourier transform of 5(¢) and

using Parseval’s theorem, we have

¢§(TH3 Tas fDH, fDa) = exp[j27r(fDaTa - fDHTH)]
7805 = 10087 ~ o) explizn (o — )l (133

Hence,

Os(rm,7as s ) = | [ 807 = 10877 = o) xpliznf(mm =l . (139

* Clearly, to minimize the likelihood that a target will be detected at the point (7w, fp,)
when it is actually located at the point (7., fp,), it is desirable that 6;(-) be an impulse
located at (74, fp,)-

The ambiguity function is also related to the parameter estimation problem for a slowly
fluctuating point target where the complex envelope of the received signal is again assumed

to be of the form
F(t) = E'j)§(t —rta)exp(j2n fp )+ 7, T <t< T+ T (1.35)

and 7y and fp, are unknown nonrandom parameters that we wish to estimate.

Because the unknown parameters are nonrandom, we use a maximum likelihood estima-
tion procedure. The maximum likelihood estimates are those values of 7 and fp, at which
the likelihood function is a maximum. In fact, the likelihood function and the likelihood
ratio for the simple binary detection problem are identical [5]. Therefore, from (1.24), the

log likelihood function is

o? 20} E, = 2
In L (7, fpy) = In (203.& " 03) MPToR Ty |1 (71, fow))| (1.36)

where, from (1.18),

- tg+T
Ry (1, fog) = / F(8)5*(t — 1) exp(—7 27 fp, t)dt. (1.37)

H
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Since the log likelihood function is maximized by maximizing |R1(TH, fDH)lZ, the maximum
likelihood estimates of 7y and fp, are those values of 7y and fp, at which lRl(TH, fDH)l2
is maximum.

As in the detection problem, the ambiguity function is defined by excluding terms in-
volving noise. If the actual values of delay and Doppler are 7, and fp,, respectively, the

ambiguity function is found to be

0t T o ) = | [ 5= 750~ rw) el — Fo )| (139)

which is identical to that obtained in the detection problem. Hence, the time-frequency au-
tocorrelation function is also of the same form as before. Clearly, to minimize the estimation
errors, it is desirable that 8;(-) be an impulse located at (7a, fp,)-

There is an important variation of the ambiguity function given in the foregoing discus-
sion. Letting 7/ = 7y — 7, and fp, = fpy — fp., the ambiguity function can also be put in

the form
') 2
o5(r', f) = | [ 5(05"(¢ = ) expl(—jem fpt)dt| (1.39)
That is, the ambiguity function is defined in terms of the differences between hypothesized

and actual delay and between hypothesized and actual Doppler shift. In particular, letting

z=1t—17'/2 gives
2

05(r', fp) = (1.40)

/oo ~ T, ~k TI . !
$lz+ 5)5\e—3 exp(—j2r fpz)dz

The above form of the ambiguity function is what one commonly finds in references, and is

called the symmetric form. It was shown in [16], however, that ambiguity functions in the
form of either 05(Ta, Ta, fDy, fD.) OF 05(7', fpp) do not convey sufficient information for the
signal designer in bistatic radar applications. The ambiguity function for a bistatic radar
was developed there. The analyses given in this work concentrate on the application to a
monostatic radar, but the results can be extended to the bistatic case by applying the results

from [16].
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The notion of ambiguity function can also be extended and defined for two different
signals. Define the cross ambiguity function of 3,(t) and 32(t) as

o0

05,5, (, fp) = ( / 51()53(t — 1) exp(—j2n fot)dt| . (1.41)

- 00
Also, the function inside the magnitude signs is defined as the time-frequency cross-correlation

function of 8,(¢) and 3,(t), which is denoted as é5,5,(7, D),

$s5,(r,f0) = [ 5i(8)33(t — 7) exp(~j2m ft)d. (1.42)

With the above generalization, the statistic calculated by the receiver can be viewed as the
cross ambiguity function between 7(¢) and 3(t). By letting 3,(t) = 3(t—7.) exp(j2~ fp,t), the
ambiguity function 8;(rg, 7., fDy» fp.) can also be expressed as 05,5(Ta, fpy). This extension
will be found useful in Chapter 2. It is also possible to express the cross ambiguity function
in the frequency-domain. Denoting the Fourier transforms of 3:(t) by S’,( f),1=1,2, and

using the generalized Parseval’s theorem, we have

$5,5,(7, fD) = eXP(—jQWfDT)/_Z S1(£)S3(f — fp)exp(j2r fr)df. (1.43)

It follows that
05l o) = | [~ 5P3 - o) exelizmiry] (1.44)
Rather than simply defining the ambiguity function, as is done in most references, we
have shown that the ambiguity function arises naturally in both the detection and parameter

estimation problems. In both applications, it is desirable to choose a waveform for 3(t) such

that the shape of the ambiguity function approximates an impulse. As shown in the literature

- [17], however, the total volume under the ambiguity function is invariant to the choice of

signal. The implication of this result is that, if we change the signal in order to narrow the
main peak and improve accuracy, we then must check to see where the displaced volume
reappears in the 74 — fp, plane and check the effect on system performance. In other

words, an assessment of the ambiguity function of a signal is needed to determine whether

12
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this signal is suitable for a certain situation. The use of the ambiguity function in a radar

operation is depicted in Figure 1.1.

1.3 Wigner-Ville Distribution

Unlike the ambiguity function, which has its origin in radar signal detection and param-
eter estimation problems as shown in previous section, the Wigner-Ville distribution was
first introduced in the field of quantum mechanics as a bilinear distribution of two functions
representing position and momentum [4]. Due to its importance in quantum mechanics, the
Wigner-Ville distribution has been well studied and its properties derived [18],[19]. This
distribution has found extensive use in optics, where it can be calculated directly by analog
methods [20],{21]. Recently, the Wigner-Ville distribution has been examined for use in the
field of signal analysis and processing, where it represents a bilinear time-frequency distribu-
tion [13]. Other applications include pattern recognition [22] and signal classification [23]. It
should be pointed out that different versions of this distribution have been proposed. In this
work, however, we define the Wigner-Ville distribution in terms of signa,i complex envelopes
[8],[24], instead of real signals.

The Wigner-Ville distribution of two continuous signals, 3;(¢) and 3,(t), is defined by

Ws,5,(t, f) = /_: § (t + %) 3 (t — %) exp(—j2x fr)dr. (1.45)

When 31(t) = 8(t), the ‘Wigner—Ville distribution (1.45) is called the auto-Wigner-Ville
distribution. Otherwise it is called the cross-Wigner-Ville distribution. Letting 7/ = 7/2,

the Wigner-Ville distribution can also be rewritten in the form

Wi, 5, (8, f) —2/ 1(t + 7)85(t — 7") exp(—g4n fr')dr (1.46)

Using the generalized Parseval’s theorem, the Wigner-Ville distribution can be expressed in
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5 (1) .
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r(t) : Complex envelope of the received signal

5 (1) : Complex envelope of the reference signal

Figure 1.1: Radar application of ambiguity function
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the frequency-domain as

Wi, 1) =2 [ 5i(F +0)55(f - v) exp(jdmut)ar. (1.47)

Generalization of the correlator based receiver to one based on the Wigner-Ville distri-
bution is due to Moyal’s formula. It states that the magnitude-square of the inner product
of two signals, say 31(t) and 33(t), is equivalent to the inner product of the Wigner-Ville

distributions of §,(t) and 3;(¢). That is,

o0
—00

The above result can be shown by substituting the definition of the Wigner-Ville distribution

/ / Wi, (£, )WZ (¢, f)dtdf. (1.48)

given by (1.45) into the right-hand side of (1.48) yielding

| [ wa Wi fdds

LA (435 () i)

. {/_oo (t + 2) (t - 5) exp(—]27rf'r2)d7'2} dtdf. (1.49)

Assuming the order of integration is interchangeable,
[ [ wat yws e, frdeds

= [ Long)s(-5)a(3)a(-3)

A [ exvliznsirs — ro)lds ) dradradt. (1.50)

The term in the braces is the inverse Fourier transform of a Dirac delta function occurring

at 75 — 7. That is,
/_ exp(j2r f(m2 — m)]df = 6(m2 — 1) (1.51)

where 4(-) denotes the Dirac delta function. Utilizing (1.51) and integrating over 7, gives

/°° /°° Wi, (t, )WZ (t, f)dtdf
- / / ( ) (t -2 ) s (t + %) 5 <t _ le) drydt. (1.52)
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The left-hand side of (1.48) can then be obtained by letting u =t 4+ 71/2 and v =t — 71/2.
When 3,(t) = #(t) and 35(t) = 3(t — 7i) exp(j27 fp,t), it is obvious that the left-hand side
of (1.48) is the optimum radar detection and estimation scheme derived in Section 1.2. By
calculating the left-hand side of (1.48) for various values of 77 and fp,, the radar receiver
performs detection and estimation simultaneously. On the other hand, as indicated by the
right-hand side of (1.48), the optimum reception procedure can be equivalently implemented
by matched filtering the received signal’s Wigner-Ville distribution and the reference Wigner-
Ville distributions. Hence, the optimality of the receiver based on the continuous Wigner-
Ville distribution is established. However, the Moyal’s formula for discrete time/frequency
signals derived in the literature does not appear to result in an optimum discrete receiver.
This problem is addressed in Chapter 3.

Moyal’s formula can be further extended by using the following relationship between
the Wigner-Ville distribution and the time-frequency correlation function. Taking the two-

dimensional Fourier transform of the Wigner-Ville distribution gives
/ / Wi, (¢, f) exp(—j2mot) exp(j2n fu)dtdf

= /_oo /_oo {/_wél (t+ %) 8] (t— g—) exp(—j27rf7')dr}

-exp(—j2nvt) exp(j2n fu)dtdf

_/ / 5 (t+ ) ( 2) exp(—j2nrvt)drdt

. {/ exp[s2m f(u — T)]df} (1.53)

where it is assumed that the order of integration is interchangeable. The term in the braces
is the inverse Fourier transform of a Dirac delta occurring at u — 7. Therefore, integrating

over T and f gives

/ / W3, (¢, f) exp(—j2nvt) exp(j 27 fu)dtdf

2/—00 (t+ ) (t‘— %) exp(—j2mvt)dt

= exp(jrvu)gs, (u,v). (1.54)
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It follows that

/°° /°° b3, (u,v) @5, (v, v)dudv
= / / {/ / Ws, (t1, f1) exp(—]27rvt1)exp(]27rf1u)dt1df1}
{/_oo /_oo Ws, (t2, f2) exp(—j2muty) exp(j27rf2u)dt2df2} dudv. (1.55)

Assuming the order of integration is interchangeable and integrating the exponential terms

over u and v gives

/_o:o [_o:o b5, (u,v) 85, (v, v)dudv
_ /°° /°° I /°° Wi (11, Fo )W (t £2)8(t2 — t2)6(Fu — fo)dtrdtadfrdf
= [T [ Wa(t, W3 (1, fr)dtads (1.56)

Comparing (1.56) and (1.48), it is clear that the optimum receiver can also be implemented
in the form of the inner product of the time-frequency autocorrelation functions of 7(t) and
5(t — i) exp(j27 fpt). This is the form under development in [11]. In Chapter 3, we will
apply the discrete version of (1.56) to the discrete time/frequency distribution based radar

receiver.

1.4 Rationale for Using the Time-Frequency Distri-
- bution Based Receiver

Application of time-frequency distributions to signal processing has been the focus of
considerable research in recent years. In particular, the use of time-frequency distributions
in radar reception has been considered. A time-frequency distribution based radar receiver
processes the time-frequency distribution of the signal instead of the signal itself. One of
the major advantages of performing radar reception based on time-frequency distributions
is that it transfers detection and estimation procedures into time-frequency space, where

feature selection and time-variant filtering are more readily carried out [25].
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Among the various types of time-frequency distributions considered, a receiver based on
the Wigner-Ville distribution has been shown to be also optimal in the Neyman-Pearson
sense. Such a receiver has advantages over the conventional one when the problem is not
completely specified because it enables estimation of the unknowns. In addition, noise sup-
pression is easier when the signal waveshape is unknown. An example of application of the
Wigner-Ville distribution based receiver involves underwater detection [9] where the sound
emitted from the engine of an underwater vehicle cannot be determined a priori. Another
example deals with detection of a maneuvering target [10]. In a recent paper [11] it is shown
that a receiver based on the time-frequency correlation function is also optimal. This choice
of implementation has the advantage that it is computationally more tractable for linear
fm signals. The use of such a receiver is demonstrated through the detection of iceberg
fragments.

However, as mentioned earlier, implementation of the receiver based on the time-frequency
distribution has been restricted to the continuous case. Digital implementation of the opti-
mum radar receiver based on the time-frequency distribution is derived in Chapter 3 of this
work. Further considerations regarding the advantage of using a time-frequency distribution

based receiver are also given there.
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Chapter 2

Discrete Versions of the Ambiguity
Function and Wigner-Ville
Distribution

In this chapter we consider the discrete ambiguity function and the discrete Wigner-Ville
distribution. In Section 2.1, we review the problem of radar detection and estimation us-
ing sampled signals. This analysis serves as a basis for implementing the optimum discrete
receiver. As a direct result, Section 2.2 shows the manner in which the discrete ambiguity
function arises from the conventional optimum discrete receiver. We then derive the sampling
criteria to prevent aliasing in the discrete ambiguity function that may result in degradation
of receiver performance. Also, we propose an interpolation formula to recover the contin-
uous ambiguity function from the discrete one. This interpolation formula is simpler than
the one found in the literature [16]; however, it can only be used to recover that portion
of the continuous ambiguity function corresponding to the alias-free region of the discrete
ambiguity function. In Section 2.3, attention is turned to the review of derivations of var-
ious versions of the discrete Wigner-Ville distribution. Sampling criteria and interpolation .
formulas are given. A new interpolation formula that is simpler than the one found in [14] is
derived; hoWever, it can only be used to recover that portion of the continuous Wigher—Ville

distribution corresponding to the alias-free region of the discrete Wigner-Ville distribution..
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2.1 Radar Detection and Estimation Using Sampled
Signals

In this section, we review radar detection and estimation problems where the observa-
tion consists of discrete samples obtained by uniformly sampling the received signal. The
sampling process is assumed to be performed at the output of the synchronous (1,Q) detector.

Let v/E;3(t) denote the complex envelope of the transmitted waveform such that

/Z 5P dt = 1. (2.1)
Thus, the transmitted energy is E;. Here, we assume that 3(t) has essentially both lim-
ited duration, [0,7), and bandwidth, (—B, B). By essentially it is meant that the signal
simultaneously has negligible energy outside [0, T) in time and outside (=B, B) in spectrum
[26]. When the transmitted signal is narrowband and the target is non-maneuvering, the
complex envelope of the reflected signal § r(t) from a slowly fluctuating point target can be
approximated by
8r(t) = by/Ei3(t — 7.) exply2r fp, (t — )] (2.2)
where b is a complex Gaussian random variable used to describe the reflective characteristics
of the target, 7, is the round-trip delay, and fp. is the Doppler shift. The complex variable
b can be expressed in terms of its envelope and its phase, b = ]?)] exp(j¢). The envelope of b

is Rayleigh distributed with its first two moments given by

A \/ga,, (2.3)

E[|B]Y] = 202. (2.4)

and

The phase of b is uniform. The term exp(—j27 fp,7.) on the right hand side of (2.2) can be

absorbed into the phase of b such that
3r(t) = b\/E3(t — 7,) expj2r fp,1). (2.5)
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Note that this target return model was shown in [16] to be appropriate for both monostatic
and bistatic radar systems.

When the receiver is implemented digitally, the received signal is sampled prior to the
detection and/or estimation procedure taking place. The design of the sampling process
should account for the fact that the target return is a time delayed and perhaps a frequency
shifted version of the transmitted signal. The observation should last longer than the signal
duration to account for uncertainty in the signal delay. Assume that a total of N samples are
taken and N > T/Ty, where T; is the sampling period. Let Ny = T/T, and No = N — N;.
The interval NoT; represents the predicted maximum delay. Also, the bandwidth of the
A/D converter should be able to accommodate both the bandwidth and Doppler shift of the
transmitted signal. It is assumed that the maximum Doppler shift to be encountered is known
and the bandwidth of the A/D converter is greater than the sum of the signal bandwidth and
the maximum Doppler shift so that no distortion will occur to the received signal spectrum
in the sampling process. The aforementioned assumptions about the observation duration
and the bandwidth of the A/D converter are assumed to hold true throughout this work.
The observation obtained is a sequence of random variables 7y, - -, 7y which are equal to the
sums of samples of the target return and noise when the target is present, while they consist
of only noise samples in the absence of the target. Denote the observation sequence by the
vector #, where #1 = [f,-+-,7n]. Also denote the sequences of the target return samples

and the noise by the vectors 8g and 7, respectively. In particular, the elements of 55 are
5r(kT,) = b\/E3(kT, — 7,) exp[j2r fp kTs), k=0,1,..,N —1. (2.6)

Assume that the noise samples are independent and identically distributed Gaussian random
variables with zero mean and variance o?2.
Before deriving the optimum discrete receiver, we recall that the problems of detecting a

target and estimating the delay and Doppler shift in the target return were treated separately

in Section 1.2, where we dealt with continuous signals. The continuous ambiguity function
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was shown to be associated with both the optimum detection procedure and the optimum
estimation procedure. The derivation of the optimum discrete receiver and the discrete
ambiguity function can follow a manner similar to that presented in Section 1.2. However,
it is also possible to carry out the analysis with a different approach by forming a composite
hypothesis test and combining it with a generalized likelihood-ratio test [5]. With this
alternative, the detection and estimation problems are combined into one formulation. This
approach is useful in reflecting the nature of radar operation where detection and estimation
are performed simultaneously. The need to perform detection and estimation simultaneously
is due to the fact that estimation of delay and Doppler shift in the target return is meaningful
only after a target return is detected, but a reliable detection requires the knowledge of the
delay and Doppler of the target return.

The composite hypothesis-testing problem is formulated as

HII i’=§R+7~l

Hy: # = . (2.7)

In this formulation, Hy is a simple hypothesis and H, is a composite one in which , 7,, and
fp, in the target return are unknown. Among these unknown parameters, b is a random
variable with a known probability density function over which it can be averaged [5]. The
procedure of averaging b over its probability density function will be given in the following
paragraph where we evaluate the generalized likelihood ratio. The rest of the unknown
parameters 7, and fp, are nonrandom and their values need to be estimated. The estimates
of 7, and fp, are obtained from maximum likelihood estimates. Denoting the hypothesized
values of 7, and fp, by 7# and fp,,, respectively, the maximum likelihood estimates of 7,
and fp, are those 7y and fp, that maximize the conditional probability density function

pf‘IHum,fDH(')‘ Denote the maximum likelihood estimates of 7, and fp, by 7y and fDH,
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respectively. Then the generalized likelihood-ratio test for (2.7) is given by

. H,
pi‘IHlviH'fDH(R TH,fDH) > ’Y (2 8)

P’i‘IHo(R) <

Ho

where « is the threshold.

In the test (2.8), pj m,(-) is simply the probability density function of the noise, i.e.,

- 1
Piim, (R) = (@mo2) 7 P (_202

(2.9)

where “1” denotes the Hermitian transpose. To obtain an expression for the conditional prob-
ability density function in the numerator of (2.8), we recall that pj g, - fDH(-) is the maxi-
mum of pj g, -y g (*) as a function of 7 and fp,; therefore, we need to find ps g, ... fDH(-)

first. Denote the hypothesized target return vector by 8y, the elements of which are
3y (kTs) = 8(kTs — ) explj2r fp, kTs], k=0,1,...,N—1. (2.10)

Then, the conditional probability density function of # given the unknown parameters can

be expressed as

~ ~ . 2
" . 1 |R - VE/|B|e'54]
Pt emtog (B O 1Bl 7, fowr) = I i 502 L (21

Using the a priori probability density function of b, we have

P (R 700 S0 = [, [, po (R 1Bl 7, fou)pu( g 1Ba4IB| (212

where Xz and Xy denote the domains of the random variables || and v, respectively.

Carrying out the integrations on the right-hand side of (2.12), we have

pi‘lHlv‘rH’fDH(R I TH, fDH)

oo pT 1
—_—/0 /_7r ((2W03)N/z exp

—202 27

Iﬁ—méie’%'zp &)
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—|BI? -
[@exp( |B2| )] d¥d|B|

202 4o}
Z1RP
o) oo
= exp|———
ol (2ro2)N? Jo [Blexp 4o}
I eXP[IWEtBsHP 2VE| BRe{e=1" 5}, R}

—9¢2
202

} d¥d|B|. (2.13)
Denoting the phase of 5},1”' by ', we have

pi'lH],TH,fDH(R I TH’ fDH)

] g
= exp|———
Aro? (2ra2)N/2 Jo d 4o}

. |VE:B3g|* — 2v/E;| B|Re{ei®' -9 |§},R|} .
/ exp dd|B|
-7 —20'721
_1R|2)
. eXP( 202 /oo |}§|ex QO'bEt|SH|2+0'n|B|2
 dro? (2r02)N? Jo —4oio?
B||5%, R| cos(v' .
[ oo L | Clu)) p
-IRp "
_ o) /°°|1§|ex 20y Bl3nl + o) o
4ol (2mo2)N? Jo P —4o}o]
VE|B||3LR|\ .
.zﬁzo( / '2 21 a8 (2.14)

where Iop(-) is the modified Bessel function of the first kind of order zero. Denoting the

multiplier in front of |B|? in the exponential term by a, we have

p"|H1,TH,fDH(R TH fDH)
R

exp <_J_J_

-1t g
203 - VE:|B| IsHRl .
_‘“"""““20 (27r02)N/2/0 |B|exp[—-a|B| ] I (_—_ag d|B|

~1Rp -
exp("%;gj') E, |§;},R|2 015
- dao? (2%0,21)N/2 P 4ao;, (219)
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In deriving (2.15), the identity [27]

oo \ 2 _ A2
/0 ze”*" I(Bz)J,(yz)dz = %exp (ﬂ 4a7 ) J,(g—z) (2.16),

was utilized where J,(+) is the Bessel function of order v. It should be pointed out that
in the application of (2.16) to (2.15) both v and  were zero, and the fact that Jo(0) = 1
was also used. The last relationship in (2.15) indicates that ps, Hlym,fuﬂ(') is a monotonic
increasing function in |§L’F|2. Therefore, the values 7y and fDH at which |.§}ﬁ'|2 attains its
maximum are precisely those values that maximize pj g, ;. fDH(.).

Thus, the generalized likelihood ratio given in (2.8) can be written as

“ A a4 =127
Pi'|H1,+H,fDH(R~|TH’fDH)_ 1 M (2.17)

= exp
P |, (R) 4ac? 4aot

where 8p is the hypothesized target return with 75 and fDH as its parameters. From (2.17),
it is seen that |85#|2 can be used as a sufficient statistic in performing the generalized
likelihood ratio test. Therefore, discrete radar detection and estimation problems can be
solved by computing |34#|? and comparing it with a threshold to determine the presence or
absence of the target at (7w, fpy). The estimates 7 and fDH are determined by maximizing

|.§'L7~'|2 over all possible parameter values.

2.2 Discrete Ambiguity Function

The detection and estimation procedure developed in the previous section requires pro-
cessing of the statistic |87 1#|?, which is a function of the parameters 7y and fp,. Based on
this statistic, receivers are conventionally implemented with a discrete matched filter /correlator
followed by a square law device. As in the continuous case, a discrete ambiguity function can
be defined and used to analyze such receivers. In this section, we present a number of defini-
tions of the discrete ambiguity function that have appeared in the literature {28],(29]. Also,

we consider the sampling criteria that prevent aliasing in the discrete ambiguity function
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which can result in degradation of receiver performance. We then derive an interpolation
formula which is simpler than the one found in the literature [16] to recover the continuous

ambiguity function from the discrete ambiguity function.

2.2.1 Time-domain Representation

In this subsection we show the relationship between the time-domain representation of
the discrete ambiguity function and the time-domain realization of the conventional discrete
receiver as well as the relationships among various forms of the discrete ambiguity function.

When the target is present, the statistic processed by the discrete receiver can be written

as

ot on . . 12
|87 |* = |8k (35 + )|

= |45 + |47 + 2Re{3L 3y 5] 7)

N-1 2
= Ey|bf* | > 5(kT, — 7,)8"(kT, — ) exp|j2n(fp, — oy )kTs]
k=0
+{terms involving noise} (2.18)

where, as noted before, N is the number of samples obtained. Excluding the multiplier
E;|b|?, we denote the first term in the last relationship of (2.18) as é;(TH,Ta,fDH') fp,), and

the function inside the magnitude as qASg('rH, Ta» Dy, fD.)- That is,

N-1 2
|87 (* = Eib*| Y $(KT, — 7.)3" (KT, — i) expli2n(fp, — fp,0)kT]
k=0

+{terms involving noise}

A

= Etﬁ)lz ¢§(TH, Tay fDH, fDa)

= Ey|b*0;(ry, 7, Jpu> fp.) + {terms involving noise}. (2.19)

2 . 3 .
+ {terms involving noise}

Clearly, if the receiver is a direct-form realization of lé}ﬁ'P, the function QAS,:() represents a
scaled version of the matched filter’s response to the sampled target return in the absence

of noise, and ;(-) represents a scaled version of the receiver’s output. Thus, both of these
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functions provide a measure of ambiguity inherent in the sampled radar signal when it is
applied to the aforementioned receiver. For this reason, $;() was defined as the discrete
ambiguity function of the signal 8 in [28], and was used to assess the performance of the
receiver. In this work, however, we will adhere to the convention in previous chapters
and consider §;(-) as the discrete ambiguity function and #5(+) the discrete time-frequency
autocorrelation function.

In practice, only discrete values of the estimators 7y and fp,, are used when the receiver

is implemented digitally. The statistic generated by the receiver is of the form

N-1 2
A(Dr,mby) £ | #kT,)5* (KT, — nd.) exp[—j2rmA kT, (2.20)

k=0

where n and m are integers, A\, is the step size in 7y, and Ay in fp,. The step size A,
is set equal to T, so that §*(-) can be evaluated at all available samples. In addition, the
step size of A\; is set equal to 1/(NT) in order that fast Fourier transform procedure can

be employed. The resulting receiver computes

m N-1 - » . mk
A (nTs, ]Tﬁ’:) = kz;?) F(kT,)5* (kTs — nT;) exp (—]2%-1\-7—)

The range of nT, in (2.21) is restricted to [0, NoT,] since the length of observation is N,

(2.21)

and NoT, = NT, — T is the predicted maximum delay. The range of m/N is restricted to
-1/2 and 1/2 because of the frequency-domain periodicity which occurs with discrete-time
processing. It should be pointed out that receivers implemented in the form of (2.21) are
useful in generating statistics for different values of Doppler at a fixed delay (that is, slices
in frequency). Figure 2.1 depicts the block diagram of this receiver.

Since the reference signal at the receiver is zero outside [0, (N —1)T], we can extend the
bounds of the summation in (2.21) to infinity, and the discrete time-frequency autocorrelation

function associated with (2.21) can be explicitly expressed as
» m
5 Ts, ay Nrrp )
¢ <n T NT_, 9 fDa

= Y §(KT, — 7)5" (KT, — nT,) exp [— o ( - fpa> kTS] 22
k=—o00 s .
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Figure 2.1: Time-domain realization of the conventional receiver
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When 7, is an integral multiple of T, say 7, = pTs, and fp, is an integral multiple of

1/(NT;), say fp, = q/(NTs), we have

q
¢s (nTSasta NT.’ NT, )
= Y 3(kT, — pT.)5 (KT, — nT,) exp [——j27r(m—;[g)—’i} : (2.23)
k=-—o00
By setting k' = k — p, we have
b5 <nT oT g )
° e NT NT;
— ) _ ’
= exp [—j27r(———q-2£} > E(K'T,)§*(K'T, — (n — p)Ts) exp [—jZﬂ‘M] .
N it N
(2.24)
It follows that
q
o (”TS’pT“ NT,’ NT, )
=| > 3(kT,)5"(kT, — (n — p)T;) exp [—-j27r£—n—z—N—q)—] (2.25)
k=—o0

Clearly, the ambiguity function given in (2.25) can be used for signal design purposes.

As in the continuous case, we can also generalize the notion of discrete ambiguity function
to discrete cross-ambiguity function. The discrete time-frequency cross-correlation function
of the two discrete-time signals 8, and 8, is defined as

$s.5, (T, N )= kio 51 (kT)&,(KT, — nT,) exp (—jQWT—nN’E) (2.26)
and the discrete cross-ambiguity function is defined as the magnitude square of (2.26). In
this manner the test statistic (2.21) can be viewed as the cross-ambiguity function of # and
5. Denoting 3(t — 7,) exp(j27 fp,t) by §,(t), (2.22) can also be expressed as a time-frequency
cross-correlation function such that

5.5 (nTs, NT. ) = i 3, (kT)3* (kTs — nT,) exp ( ]2%%&) (2.27)

k=—o00
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It should be noted that the discrete ambiguity function is sometimes only defined in the
form of (2.25). In the context of radar detection and estimation, however, the parameters 7,
and fp, are continuous and the discrete form of (2.25) does not give an exact representation
of the receiver’s response. It is for this reason that we will use in the following analysis the
definition of cross-ambiguity function of §, and § as given by the magnitude square of (2.27)
to better describe the continuous nature of 7, and fp,.

Finally, when n in (2.26) is an even number, say n = 2u, we can express the cross-
correlation function as

i m o~ - ~ - mk
P55, (2uT3, _]ﬁ’:) = k=z_:oo 31(kT,)35(kTs — 2uT,) exp (—]2#7\[—)

= exp <—j27r%1—‘?> > 5.(kT, + uT,)83(kT, — uT,) exp (-—-jZﬂ';r]ﬁv-’E) . (2.28)
k=-co

The last relationship of (2.28) is defined as the symmetrical form of the discrete time-
frequency cross-correlation function of the time samples. Denoting the symmetrical form
of the discrete time-frequency cross-correlation function of the time samples as ¢3,3,(-), we

have

= exp (_jgﬂ-ﬂ) Z 51(kTy + uTy)$5(kTs — uT,) exp (-—j27r—r%rﬁ) . (2.29)
k=-00

Hence the symmetrical form of the ambiguity function in the time-domain is defined as

— m
05152 (UT_,, NE) =

2

Z 81(kT, + uT5)33(kTs — uT,) exp (—jQWka)

k=—o00

(2.30)

The discrete ambiguity function is sometimes defined in the form of (2.30) because of its
resemblance to the symmetrical form ambiguity function of the continuous case. However,
it is seen from the derivation that 85,3, (-) is the special case of f;,3,(-) where 7, is an even

integer multiple of 7.

30




L anm

2.2.2 Frequency-domain Representation

The receiver can also be implemented in the frequency-domain. This result is due to the
convolution theorem, which states that the discrete Fourier transform of the product of two
sequences is equal to constant times the convolution between the discrete Fourier transforms
of those two sequences. The exact value of the constant in the convolution theorem depends
on how the discrete Fourier transform is defined. Note that the sufficient statistic calculated
in the manner specified by (2.21) can be viewed as taking the magnitude square of the
discrete Fourier transform of the product of the sequences {7#(kT;)} and {§*(kTs — nT;)}.
From the convolution theorem, it is equivalent to the calculation of the magnitude square
of constant times the convolution of the discrete Fourier transform of {7(kT,)} with that of
{8*(kTs — nT5)}.

For simplicity of notation and to follow the convention in the literature, we denote the
Fourier transforms of signals by capital letters. The discrete Fourier transform of the se-

quence {7(kTs)} can be obtained by

N-1 1k i
R (NT ) T, Z (kTs) exp (—]2W—N—) , for all integer [. (2.31)

k=0
The discrete Fourier transform of the sequence {3*(kT; — nT,)} can be obtained from that of
{3*(kT;)}. The discrete Fourier transform of the sequence {3*(kT,)} with No zeros appended

is

[ N1 ( o Uk )
G (NT ) T Z 3 s) EXP (—]2%—1\7) , for all integer [. (2.32)
Note that
g —-TNZ_I"‘(ICT) on ) @ (=L, for all integer ! (2.33)
NT ) = sk=os s)exp | j2rw | = NT. , for all integer . .
Thus,
e 1 Y )
S (NT3> =G (ﬁ) , for all integer [. (2.34)
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The discrete Fourier transform of the time shifted sequence {3*(kT, — nT;)} is

G (= —TNZ_:I”*(kT~ T,)exp (—jor’s
(n) NTS - +s = S 8 nis)exp J WN
R o 1k
= Ty exp (—]QWN) 2 §*(kT;) exp (——]2%-1\—’-)
= exp (—j2w%) G (NlTs)
o n\ 4, [ -1
= exp (—]27TN) S (NTS) (2.35)
for 0 < n < N,. Convolving R[l/(nT,)] and é(n) [l/(nTy)], we have
N-1 I . l—m N-1 | l A [l—m o (I—m)n
%M (we) oo (32) - 5 2 (om) (5 o]

for 0 < n < Ny. As mentioned earlier, the statistic (2.21) can equivalently be computed by

taking the magnitude square of constant times (2.36). Due to the form of the discrete Fourier
transform used here, the value of the constant is 1/(NT?). Thus, for the region 0 < n < Ny
and —1/2 < m/N < 1/2 the receiver can also be implemented such that it calculates

m 1 =2/ s [L— M o in
A (”T”’ NTS) = ‘NT} f? R (NT,) 5 ( NT, ) xp (’2”N>

2

(2.37)

It should be pointed out that a receiver implemented in the form of (2.37) is useful in
generating the test statistic for different values of delay at fixed Doppler (that is, slices in
time). Figure 2.2 depicts the block diagram of the receiver in which the statistic is computed
as shown in (2.37).

From the linearity property of Fourier transforms it is clear that the Fourier transform of
the received signal is the sum of the Fourier transforms of the target return and the noise when
the target is present. Therefore, following the same approach as that used in deriving the
time-domain representation of the discrete ambiguity function, it is also possible to derive a
frequency-domain representation of the ambiguity function for the receiver (2.37) by ignoring

those terms in (2.37) containing noise. Specifically, let S,(-) denote the Fourier transform of
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Figure 2.2: Frequency-domain realization of the conventional receiver
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the scaled discrete-time samples of the target return {3(kT, — 7,) exp(j27 fp kT,)}. Then

N-1

S, (NZTS) =T kzzg {3(kT, — 75) exp(j27 fp, kTs)} exp (—j?ﬂ'%) (2.38)

for all integer I. Also, denote the Fourier transform of &(t — 7,) exp(j27 fp,t) by S,(-). Then

Se(f) = /Z §(t — 72) exp(y 2~ fp,t) exp(—j 2 ft)dt

= exp[~527(f — fp.)7alS(f — fp.)- (2.39)

The discrete time-frequency cross correlation function in terms of the samples of the Fourier

transforms of the discrete-time samples of the target return and of the reference signal can

be defined in the form

. m 1 =, I\ afl—m o (l—m)n
93,5 (nTs, m) = NT2 & Sr (NTs) S ( NT. ) exp [ﬂWT (2.40)

where n,m are integers. From the generalized Parseval’s theorem for the discrete Fourier
transform, the discrete time-frequency correlation function thus defined is equivalent to (2.27)
for 0 <n < Npand —1/2 < m/N < 1/2. The generalized Parseval’s theorem for the discrete
Fourier transform is giveﬁ as follows. If .‘:5'1 and 5’2 denote the discrete Fourier transform of

$; and 82, respectively, then

N-1 B o 1 N-1 . l ~ l
> 51(kT,)35(kT,) = T 3> 5 (ﬁ) S, (NT ) (2.41)

k=0 s 1=0
The above relationship can be derived by a direct substitution of the definition of the discrete
Fourier transformation. An extension of (2.41) is given in Section 3 of Appendix A, where we
consider the relationship between the inner product of continuous signals and inner product

of discrete signals. Finally, using (2.41), we have

m

a~ m a
3,5 (NTa, ﬁ) = @55 (nTs, ﬁ) (2.42)

for 0 <n < Npand —-1/2<m/N < 1/2.
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When 0 < 7, < NoTs, 7, is an integral multiple of Ty, say 7, = pT}, and fp, is an integral
multiple of 1/(NT,), say fp, = q/(NT;), we have from (2.38)

A l ol (I—q)k
S, (NTs) T, Z 3(kT, — pT,) exp[—]27r N ]

k=—o0

- exp[ 12“(13\1) ] S (%) . (2.43)

In this case,

b )

1 —mn

- e (j27r ) IZ 8 ( ) (l];Tm) exp [jzﬂl(—”]—;—pl]

_ 1 o (megn\ VI o L Y au (l=(m—q)
_NTszexp( j27r-———N ) }: S NT. S ——_—NTS

- exp [jznm]
N
- s (o) (5275 ) s () o (2 )
. exp [j o @]—V_—Q] : (244

Since S(-) is periodic with period 1/T, S[l/(NT,)] = S[(14+N)/(NT,)]. Also, exp(j2rk/N) =
explj2r(k + N)/N]. It follows that

X ( ” NT)
_ i g (z;lfv) & (1+NN£n— q)) o [j2W(1+N1)\§n —p)}
o ()

N_ffl S ( NIT ) S (————’ - S:,"T_ q)) exp [jzwﬁ%ﬂ]
RERNUE?
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: 1_01 5 ( NlT ) S (%—_@) exp [jQW@];;—p)} (2.45)

and
o m 1 N1 (1 2o (11— (m —q) o l(n—p) ’ .
9.5 (nTﬁ> = ’NTg Z,=0 S (NTS) S (T eXp J2m ] (2.46)

The ambiguity function given in the form of (2.46) can be generated using one set of signal
samples along with the fast Fourier transform. Therefore, it is useful in design of the trans-
mitted waveform. The advantages of (2.25) and (2.46) are presented in [29], and they will
also be discussed in the next subsection after we examine the sampling criteria.

When m in (2.40) is an even number, say m = 2v, we have

1 =2 g (12 .2 (I —2v)n
T NT? & "\ NT, NT, )P TN
1 (= Nerty L (4o e (1= o (=v)n
) ) (Rl oo
Since S,, S, and exp(j27k/N) are periodic, we have
- 2v
b5 (1577
1 2, (140 4 [I—v o (—v)n
T NT? ;ST<NTS)S (NT,)eXp[ﬂ” N

1 Vet fl4v—N\ 4 (l—-v—N o (l—v—N)n
TN 2 (T)S (_NT__) exp [Jz’“_—zv_“
1

I=N
=l (140 4 (1= o (I=v)n
= N7 & S, (NT3> S (NTS) exp [ﬂw N (2.48)

The last equality in (2.48) is defined as the symmetrical form of the discrete time-frequency
correlation function of the frequency samples. That is, denoting the symmetrical form of the

discrete time-frequency correlation function of the frequency samples by q_Sgr 5(+), we have
~ m 1 2, (l4m\ . (l-m (I—=m)n
PN P —— frnd r * ) D 2.4
93,3 (”T NTS) NT? § 5 (NT,, ) S ( NT, )eXp [’2” N (2:49)
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where 0 < n < Ny and —1/2 < ¢/N < 1/2. The magnitude square of (2.49) is defined
as the symmetrical form of the discrete ambiguity function in the frequency-domain. It is
sometimes used as the definition of the discrete ambiguity function in the frequency-domain.

However, it is clear that q;gr 5(+) is a special case of ‘;’S, s(+) where fp, is an even integer

multiple of 1/(NT).

2.2.3 Relationship between Discrete and Continuous Ambiguity
Functions

In the previous subsection, the discrete time-frequency correlation functions and discrete
ambiguity functions in the time-domain and in the frequency-domain were defined. These
ambiguity functions can be used to examine the resolution capability of the transmitted
signal waveforms. In the following, we examine the relationshiﬁs between the discrete forms

of ambiguity function and their continuous counterparts.

Sampling criteria

From Chapter 1 the time-frequency correlation function of the continuous signals 3,(t)

and 3§(¢) is defined as

¢s,.5(TH, foy) = /_o:o 3.(t)8"(t — 7o) exp(—j 27 fp,t)dt (2.50)

and its magnitude square is defined as the ambiguity function ;. ;(7y, fp,). Using the

eneralized Parseval’s theorem, the equivalent form of (2.50) in frequency-domain is given
g q g

by

85,5(7i fpx) = exp(—i2n foumw) [ S:(DS(f = fpa)expli2nfra)df.  (251)

.Since it was assumed that the lowpass signal 3(¢) has a duration of T' and a double-sided

bandwidth of 2B, #5,5(-) has an extent of 2T in the 757 domain, centered around 7, and an
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extent of 4B in the fp, domain, centered around fp,. In the following discussion we use
¢5,5(-) and @3 5(-) to distinguish whether the continuous time-frequency correlation function
is defined in the time-domain or in the frequency-domain; however, it should be clear that

they are equal to each other.

From (2.27), we have

. - mk
¢5r3 ( * NT, > k;()o 8- (kT,)3"(kTs — nT;) exp ( j2n N )

oo

= 3 [0 stg-nm)en (~jerg) ot — KTt}

_/ t—nT)exp( ){ > 8T, }dt (2.52)

where it was assumed that the order of the integration and summation are interchangeable.

The term in the braces of the last relationship of (2.52) can be evaluated using Poisson’s

sum formula, which is given by

S §(t—kT) = g: (2”’“) (2.53)

R T.
Hence,
B (”Ts’ N@“)
= [7 55t~ nTexp (i ]:,”;) {%kj:;w exp (j 217:,“) } dt
- Tlskiw {/: 5.(£)5*(t — nT,) exp [—j2wm—]:,%£v—)—t] dt}
- %;kio s (nTs, %) . (2.54)

The discrete ambiguity function 6;, 5(+) is the magnitude square of (2.54), thus,
m — kN
T E ¢srs (nTs, NT, )l

A m
s ("T“‘" NT,) T T, =
2
1 m m—kN
= —0;; (nTs,—> T kZ bs,5 ( —W)‘
k50

T? NT,
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m— kN
+2R‘e {7{2 3,8 ( s NT ) Z ¢ ( ) NTS ) } (255)

The above relationship indicates that the discrete ambiguity function 05, s(+) consists of alias-
ing terms that are separated from each other by integral multiples of 1/T in the frequency
dimension. Recall that ¢; ;(-) has an extent of 4B in the frequency dimension. Thus, to
prevent aliasing in (2.55), the samples used in calculating 0;,5(-) need to be obtained at a
rate greater than twice the Nyquist rate of the transmitted signal. Otherwise, the missing

samples need to be obtained by interpolation when 2B < 1/T, < 4B.

Example 2.1

As an example, we consider the effects of aliasing in the time-domain auto-ambiguity

function of the complex envelope

. sin 27 Bt )
3(t) = \/QB—-W = v/2Bsinc(2Bt). (2.56)

The discrete ambiguity function obtained at different sampling rates is shown in Figures 2.4
through 2.6. Because of the presence of the sinc function, 3(¢) is bandlimited to a double-
sided bandwidth of 2B Hertz. By means of a straightforward calculation, the continuous

ambiguity function of §(t) is found to be

0s(r, fp) = rect(fD)ﬁ-—LDDsmc[T@B /oDl - (2.57)

4B 2B

The result is plotted in Figure 2.3 for B = 1. The discrete ambiguity function é;(r, fp)
obtained with a sampling frequency equal to twice the Nyquist rate is shown in Figure 2.4.
Note the periodicity of é;(r, fp) along the frequency axis and the lack of aliasing. When the
sampling rate is dropped to 1.8 and 1.5 times the Nyquist rate, noticeable aliasing occurs,
as shown in Figures 2.5 and 2.6. Aliasing becomes more severe as the sampling rate is

decreased. O
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Figure 2.4: Discrete ambiguity function when the signal is sampled at twice Nyquist rate
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When the receiver is implemented in the form of (2.21), the statistic calculated by the
receiver is

’ N piiige (. -
A (nTs, NTS) = F,|b|“0;,; (nTs, NTS) + {noise terms}

m

"NT,

A ’
= Ts2 egr_; (nTs

) + Etli’l2

1 & m— kN
E k;o ¢§r§ (nTS’ NTs

k#0

. 1 m ot m— kN
2 NPT Y. § : . -
+2Et|b| Re {1732 Y (nTs, NT3> & ¢srs (nTs, NTS )}

+{noise terms} . (2.58)

The last equality in (2.58) indicates that aliasing will be present in A(-) when the received
signal is sampled at the Nyquist rate. Each of the aliasing terms has an extension of 4B in
the frequency dimension, and each is separated from the others by an integral multiple of
1/T; in the frequency dimension. Thus, the samples used in calculating the statistic A(-) in
the form of (2.21) need to be obtained either at a rate greater than twice the Nyquist rate of
the transmitted signal, or by interpolation when 2B < 1 /T, < 4B. Otherwise, degradation
in receiver performance as compared to that of the continuous case will occur due to aliasing
in the ambiguity function. A sampling rate less than twice the Nyquist rate can be used
only when the resulting aliasing can be tolerated in the specific application.

As shown earlier, the statistic can also be evaluated in the frequency-domain in the form
of (2.37). Since S() and exp(j27k/N) are both periodic with period 1/T,, qASSrS() is also
periodic with period 1/T,. Therefore, following the same procedure used in deriving the
sampling criteria for the test statistic calculated in the time-domain, we can conclude that
signal samples used to generate the test statistic in the manner specified by (2.37) need also
be obtained at twice the Nyquist rate.

It should be pointed out that sampling at twice the Nyquist rate is sometimes unachiev-
able because of hardware limitations. With the following example, we illustrate a simple

procedure for raising the sampling rate by a factor of two.
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Example 2.2

Consider the complex signal

5(t) = VB Sig:gﬁ “_;:S") — VZBsincl2B(t — t,,)]. (2.59)

Let B = 1 Hertz and t,, = 0.8 sec. The value of B indicates that the Nyquist rate is 2
Hertz, and the value of t,, indicates that 3(¢) peaks at ¢ = 0.8 sec. Assume that the signal
duration is essentially limited to the interval from 0 to 1.6 sec., which covers about 94% of
the signal’s energy. Also assume that two sets of samples are obtained; one set is obtained
at a sampling rate of 2.5 Hertz and the other is obtained at 5 Hertz. One period of the
discrete Fourier transform magnitude for the two sets of samples is plotted in Figures 2.7
and 2.8, respectively. Comparing these two figures, it is seen that the Fourier transform of
the samples with the higher sampling rate can be approximated by zero-padding the Fourier
transform of the samples with the lower sampling rate. The quality of the approximation
depends on the accuracy of the assumptions concerning the duration and bandwidth of the
signal. Thus, the receiver in the form of (2.37) is more suitable when sampling at twice the
Nyquist rate is physically unattainable since a higher sampling rate can be approximated by
augmenting with zeros the discrete Fourier transforms of the received samples and reference.
This procedure will be considered further in the next chapter where we discuss alternative
forms of the discrete receiver. O

As mentioned before, the discrete ambiguity function in the form (2.46) has been utilized
to examine the ambiguity function of the transmitted signal at an early signal design stage
and thus to show whether the signal is suitable for the intended radar application. In this
assessment, (2.46) is calculated for the region which covers [0, NT;] in the delay domain
and an interval equal to 1/T; in length in the Doppler domain. Recall from the previous
discussion that the discrete ambiguity function has aliasing terms separated from each other
by integral multiples of 1/T, in the Doppler dimension, and each of the aliasing terms has an

extent of 4B in the Doppler dimension. In other words, when sampling at twice the Nyquist
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rate, the discrete ambiguity function is free of aliasing in the region from —1 /(2Ts) + 2B to

1/(2Ts) — 2B in the Doppler dimension. In the aliasing-free region, we have
[ 1 = [ l—(m—gq) o l(n—Dp)
?s (nTs’pTS’NT NT) - NT? Z S( ) (_TT_ eXp | 72m =

) () e

s (2.60)

where {m — ¢|/(NT;) < [1/(2T,) — 2B]. Since the signal has an essentially limited spectrum,
the bounds on the summation in the second line of (2.60) can be extended to infinity. In a
manner similar to the one used in deriving (2.52), we have

5 (o) ()t

l=—c0

o0

=2 {/_o:o 5(f)8 (f— Tq)exp[]ZWf(nT st)]é(f—

)exp[]27rf(nT — pTy) { f: 5(f__

l=—00

vE) Y]
NZT) } . (261)

[ sns (1=

Using Poisson’s sum formula, we have

B9 o) (2]

5
:/_Z 308" (7 - 2 exlizr Sn - )

NT, E exp (— ]QFleT)}df

l=-00

= NT, 1;.0:00 {/:: S(f)S* (f — NTq> exp[j2x f(nT, — pT, — lNTs)]} df
= NT,exp (jZWﬁT%> 3 ds (nTs — pT, — INT,, ’%%i) . (2.62)
= \

It follows that

2
g\ _ | 1 Tl Lfl—m+gq o l(n—p)
s (”TS”’TS’ NT,’ NTs) =l e X © (NTS § NT, ) PN

2

(2.63)

L s o u)
-1z X 4 (nT, T~ INT,,
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The above relationship indicates that és() consists of a sum of terms, each of which has an
extent of 2T = 2N, T, and is separated from the others by an integral multiple of NT, in
the 7 domain. Thus, if (2.46) is used for the region [0, NT,} in the 7y domain, N has to be

chosen such that N > 2N; to prevent aliasing in the ambiguity function.

Reconstruction of the continuous ambiguity function from the discrete ambiguity

function

In the following we consider a procedure for recovering the continuous ambiguity function
from the discrete one. The treatment is different from that of [16]. The interpolation formula
obtained is simpler than the previous one, but with the drawback that it can only be used to
recover the region of the ambiguity function which is free of aliasing. This new result is due
to a key observation dealing with the interpolation formulas for time delayed and frequency
shifted signals. For the sake of brevity in the present discussion, we place a review on the
interpolation formulas for time delayed and frequency shifted signals in Appendix A.

As shown in Appendix A, when the sampling rate is such that 1/T, > 2(B + |fp,|), the

result in (A.6) can be used to obtain

5(t — ) exp(j2n fpyt) = 3(t — 7o) exp[j27 fp,(t — o)) exp(j27 fp, TH)

3 . sinw(t/T, — 1
= Z 81T, — i) exp(327 fp IT,) :-(t(/tq/ws > )

l=—00

(2.64)

The same procedure can be used to expand 3.(t) when 1/Ts > 2(B + |fp,|). Thus, when
the sampling rate is such that 1/T, > 2(B + |fp,|) and 1/T, > 2(B + |fp,|), the continuous

time-frequency correlation function can be written as

7(t/Ts — k)

k=-0c0

¢5.5(TH, fDy) = /_0:0 [ i 3(kTs — Ta)exp(j27rfDakT3)Sin7r(t/Ts — k)]

l=—c0
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Z Z (kTs — 70)38"(ITs — i) exply2n (fp kTs — fp,,T5))

k=—00 l=—00

o sinw(t/T, — k)sinw(t/Ts — 1)
[/_w AT —F)  a@/T,=1) & (2:65)
The integration can be evaluated using Parseval’s theorem, as shown below:
o sinw(t/Ts — k)sinn(t/Ts — l)dt
~o w(t/Ts—k) w(t/Ts 1)
= /oo [Tsrect(fT,) exp(—j2m fkTs)] [Tsrect(fTs) exp(—j2x fIT,)]" df
sin[r(l — k)]
*ox(l-k)

= Tsbu (2.66)

where 6;;, is the Kronecker delta. Thus,

$5,5(rh, fog) = T i 5(kTs — 70)8" (KT, — ) exp[—72n (fpy — fD.)kTS],  (2.67)

k=-o00

when 1/T, > 2(B + |fpy,|) and 1/Ts > 2(B + |fp.|). At 74 = nT, and fp, = m/(NT;), we

have
birs ("Ts’ N:/;)
_ T, 3 (KT, — 7.)5" (KT, — nT.) exp [—j27r ( ) kT] (2.68)
2 NT,

provided both |m/(NT)| and |fp,| are less than [1/(2T;) — B]. Comparing with (2.27), we
have

¢33 (nTs, NT) = Tyfs,s (nTs, NT) (2.69)

where both |m/(NTs)| and |fp,| are less than [1/(2T,) — B]. This result is consistent with
the conclusion about the sampling criteria. On the other hand, we can also use (A.6) to

interpolate from one set of reference signal samples to produce references for various 7g,

3(t — ) exp(j27 fp,t)

= §(t — 7ir) exp[§27 fp,(t — 7a)] exp(§27 fpy TH)

= exp(j27 fp,TH) i: §(st)exp(jQWfDHPTs)Sir;fzi(i;;;)éfi;]P].

(2.70)
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Thus,

¢§r§(THa fDH)

_ . ® | . _ . sinw(t/T, — k)
= exp(—j27 fp,TH) /_oo L;oo 3(kTs — 7,) exp(j2m fp kTs) /T, —F) ]
o= : sinw[(t — ) /Ts — p) "
. l:p;oo 3(pT,) exp(j27 fp, pTs) 71t =)/ T> — 7] dt

= exp(—jzﬂ'fDHTH) io: ’ i 3 (kTa - Ta) §*(pT,)

exslze(Tn.kT — o, | TR el

] (2.71)
The integral can be evaluated by

/oo sinm(t/Ts — k) sinw[(t — ) /Ts — p]
- z;(t/Ts —k) [t —7)/Ts —p]
= [ (Dect(FT.) exp(—j2m fKT.)] Turect(fT.) exp(32n flrs + L) df
_7 sin [ty /T, — (k — p)]

dt

Rty vy e (272)
It follows that
bss(rits fog) = T exp(—i2n foyra) 3o 3 (KT, — 7.) (o))
k=—00 p==—00
) . _ sinw[rg/Ts — (k — p)]
expli27(fp kT, — fp,pTs)] lra/T, _ (k —p)] . (2.73)
Letting n = k — p gives
bus(ra Jog) = .- exp(—i2nfouma) 3o 3o §(KT, = 1) &((k - m)T]
n=—00 k=—00
-expl—327(fpy — fpa)kTs) exp(jZWfDHnTs)Sin m(ra/T, — n) (2.74)

m(tg/Ts —n)

Then, from (2.68) and (2.74), we arrive at

. — (=i2rfpyH) a N (j2nfp. nTs) ST 7(Ti/Ts - n)
¢STS(TH’ fDH) € H n=2_:°o ¢8r3(nT3, fDH)e H W(TH/Ts — n) (275)
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where both |fp,| and |fp,| are less than [1/(2T,) — B]. Applying (2.69) to the above

relationship, we have

$5.5 (m, ) Texp( o ,,H)
I (o) e () T e

This result is useful for reconstructing ¢;.5(7a, fp,, ) from (Iggrg[nTs, l/(NTy)].
Application of (A.14) yields

S(f = fog)exp(527 frir) = 5(f — fou)expli2n(f — fou)7H] exp(727 fp, TH)

- £5( ufen{ i
.exp[ M( )T] sin(fNT, — 1)

n(fNT, — 1)
where 0 < 7 < NpT. A similar procedure can be used to expand S’T( f) when 0 < 7, < NoTs.

(2.77)

Thus, when both 7y and 7, are less than NyT,, we have

exp[—727(fp.Ta — fDHTH)]¢§, 5(ta, fog)

= /_: {m;wS(NT )e"p( JQWNT T“) exP[ ”( NmT) T]
St S (- ) o ()

, l sinw(fNT, — )
o |oir (15 1] i)

L S q Crk q ) [ q ]
= NT. q;oo S (NT, D,,) S (NTs exp |72 NT. 7o)l - (2.78)
In particular, when fp, ={/(NT,) and [ is an integer, we have
5,5 (TH, m:) =NT, [_727r (fDaTa - NT, )]
[
q;oo 5 (NT ) (NT ) P [J%NT (s = Ta)] (2.79)
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where 0 < 75,7, < NoT,. On the other hand, one can also use (A.14) to interpolate from

one set of reference signal samples to produce references for various fp,. Thus,

S(f — fou) exp(j2 fra)
= S(f — fou) expli2n(f = fou)r) exp(j27 fp, )

= exp(—727 Dy TH) i S(NIT) exP( ' NlTs )

l=~0c0
l sin 7 [(f — fpg)NTs — 1]
-exp [ Jn (f fou = 3 ) T] ((f = fo)NT, = 1]

Employing a procedure similar to that used in deriving (2.71) through (2.75), we have

(2.80)

eXp[_j27r(fDaTa - fDHTH)]¢.§,- ~(TH’ fDH)

2/_0;{ 2 S(NT )eXP< Jz”NTT“)eXP[ ”( Nn;r)T]

m=-=00

i NT, — ) S [ ) l
. SII;Z}(]J;TS 2. m”)n)} {exp(—]Q']rfDHTH) Z S (NTS) exp (—-]2 NT. )

o
o o (1 ) ] AL

_ NlTs (527 foy ) exp(—J7 fp, T m;w ,_ZOOS (NT >
e (”]”‘V;l ) exp [ T, )] exp ( NlT )
o (13T i 7 o

Using (2.79) in (2.81), we arrive at

{ l
¢35,5(TH, fpy) = exp(—jm fp,T) Z ¢35 (TH, NT. ) exp ( NT. )

I=—00

sinw(fp, NT; — 1)
7r(fDH*NTs - l)

where 0 < 7g, 7, < NoT,. Using the fact that ¢z 3(-) = ¢5,.5(-), and putting (2.76) into

(2.82)

(2.82), we have

o0 0o [ I
¢§r§(TH7fDH) =T, exp(—ijDH Z Z ¢3r3 (TLTS, NT, ) exp (] NT, )

|=—00 n=—00
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sinm (g /Ty — n)sinw(fp,NT, — 1)
w(1g/Ts —n)  #(fpyNT, =)

-exp |—j2r (ta — nTy) (2.83)

NT,
That is, we can use (2.83) to produce the continuous time-frequency correlation function
from ¢;,5(-) for the region 0 < rg < NoT, and |foxl < [1/(2Ts) — B]. As a check, at
points (nT;,l/(NT,)) in the 7y — fp, plane, where n and [ are integers and 0 < n < Ny
and [I| < [1/(2T;) — B], the two sides of (2.83) are equal as indicated by (2.69). It should
be pointed out that at an integer multiple of T, in delay or an integer multiple of 1/(NT,)
in Doppler, one of the two sinc functions in (2.83) turns into a Kronecker delta. Thus,
interpolation along a cut in Doppler or delay using (2.83) involves only one sinc function in
this case. This is the same procedure used in interpolating one-dimensional functions. On
the other hand, at an integer multiple of T, in delay or an integer multiple of 1/(NT;) in
Doppler, none of the two sinc functions in the interpolation formula given in [16] reduces to
a simple Kronecker delta, but one of them changes into a function involving the variable to

be interpolated. Therefore, (2.83) is simpler to implement for the region 0 < 75 < NoT, and
|fpal < [1/(2T5) - BI.

2.3 Discrete Wigner-Ville Distribution

To enable digital processing of signals based on the Wigner-Ville distribution, various
forms of discrete Wigner-Ville distribution have been proposed [13]-[15]. These definitions
were conceived so that the discrete versions have the same properties as the continuous
one. In this context, aliasing is one of the problems of major concern. In the following,
we will examine a few forms of discrete Wigner-Ville distributions. Then, we consider the
sampling criteria and recovery of the continuous Wigner-Ville distribution from the discrete
one. An interpolation formula which is simpler than the one found in the literature [14] is
proposed. This alternative, however, has the drawback that it can only recover that portion

of the continuous Wigner-Ville distribution that corresponds to the region in the discrete
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Wigner-Ville distribution free from aliasing.
The cross-Wigner-Ville distribution of two continuous signals, 3;(¢) and §;(t), was defined
in Chapter 1 as

(e o]

Wis (8, f) =/

. 31 (t + %) 35 (t — %) exp(—j2r fr)dr. (2.84)

When §;(t) = 8(t), it is called the auto-Wigner-Ville distribution. It was shown that

W5, 5,(t, f) can be written in the forms

Wit f) = 2/ 1(t +7)85(t — 7) exp(—gdn fr)dr (2.85)

and

Wi, f) = 2/:: Si(f + v)S3(f — v) exp(jarvt)dv. (2.86)
To distinguish whether the Wigner-Ville distribution is given in the time or frequency-
domain, we will denote the one that is given in the frequency-domain by Wy 3 (-). Once
again, we will assume that $;(¢) and &;(t) are both essentially limited in duration and
spectrum to [0,T) and (—B, B), respectively. It follows that the Wigner-Ville distribution

(2.85), or equivalently (2.86), are limited to (0,T) in the time-domain, and (—B, B) in the

frequency-domain.

2.3.1 Time-domain Representation

In the following, we will derive the time-domain representation of the discrete Wigner-
Ville distribution. As shown in Appendix A, when the sampling rate is greater than the
Nyquist rate, relation (A.4) can be used to expand the signal. Thus, we can rewrite (2.85)

to obtain

Ws,5,(t, f) —2/ 1(t + 7)85(t — 7) exp(—gdn fr)dr

_2/ { - kT)sm[(t+T)/T,—k]}

#{(t+ 1)/ T, — A

k——oo
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1y 3 sinz[(¢t — 7)/T, — p] *ex —jdr fr)dr
{p-—;oo (P w[(t —7)/Ts - p| } p(—j4n fr)d

o0 ©0

=2 Y Y §(kT,)3(pTy)

k=—c0 p=—00
./00 sinw([(t +7)/T, — k] sin7[(t — 7)/T, — p]
~oo w[(t+7)/Ts— k] w[(t—1)/T, —p|

exp(—j4n fr)dr. (2.87)

The integral can be viewed as the Fourier transform of the product of the two sinc functions

and it can be evaluated by using the convolution theorem. Hence,
o sinw[(t+ 7)/Ts — k] sinw[(t — 7)/T,s — p]
o T(t+T)/Ts—k =x[(t—7)/Ts— p
=T? exp[j47rf(st —t)] / rect(vT,)rect[(2f — v)T,] exp[j2nv(2t — kT — pT,)]dv

exp(—jdr fr)dr

1/(2Ts)
= T? exp[jdn f(pT, — t)]/ o rect[(2f — v)Ty) exp[j2rv(2t — kT, — pT;)]dv. (2.88)
~1/(2T,
When 0 < 2f < 1/Ts, the last line of (2.88) can be written as

1/(2Ts)
T? expljdn f(pT, — t)]/ . exp[j2nv(2t — kT, — pT;)]dv
~1/(2T,

1/(2Ts)
t1(2f — v)Ts 2rv(2t — kT — pTs)]d
1y Fectl2F = o) T explizmo pT.)do

sinw(1/Ts — 2f)[2t — (k + p)T]

= T2 expljdn f(pT, — 1)

= TZ exp(j27 f(p — k)T] (2.89)

When —1/T, < 2f < 0, the last line of (2.88) can be written as

1/(2Ts)
T? expljdn f(pT, — t))] /1/(2T ) exply2rv(2t — kTs — pT,)]dv
2£41/(21.) _
= T? expljan f(pT, — t)]/ - rect[(2f — v)Ts] exp[j27v(2t — kT — pTs)]dv
~1/(2T, ~

sinm(1/T, + 2f)[2t — (k + p)T3]

= T?explj2n f(p — k)T.] w2t — (k + p)T]

(2.90)

For other values of f, the last line of (2.88) is zero. Thus, we have

/°° sinw[(t + 7)/Ts — k}sinw[(t — 7)/Ts — p]

~o w[(t+7)/Ts— k] w[(t—71)/Ts - p]

sinw(1/Ts — 2|f])[2¢t — (k + p)T%)
72t — (k + p)Ts]

exp(—jdr fr)dr

= T? exp[j2r f(p — k)T.]

rect(fTy). (2.91)
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Putting (2.91) into (2.87) and letting n = k + p, we have

Wit f) =272 3 { > §1(kTs)§2[(n—k)Ts]exp[—ﬂvrf(?k—n)Ts]}

n=-00 | k=—o00
sinw(2t — nT,)[1/T, — 2|f|]
. 7(2t — nTy)

ect(fT}). (2.92)

The term in the braces in (2.92) was defined in [14] as the discrete-time, continuous-frequency

Wigner-Ville distribution, which will be denoted as Wi,,., (). That is,

o0

Wi, 0T, f) = 3 51(kT)33[(n ~ k)T.] expl—j2n f(2k — n) T3]
k=—00
= exp(j2n fnT,) ki 31(kT5)83[(n — k)T.) exp[—j2n(2f)kT,]. (2.93)

In particular, consider the case when f is an integral multiple of 1 [(2MT,), where M is an
integer and M > T'/T. Letting f = q/(2MT,), we have

Wi s (nTs, ﬁi) = exp <j7r%—Z> kg:oo 51(kT,)33[(n — k)T, exp (—jQW]q‘—;c-) . (2.94)
From the above relationship, it is seen that I/Vt~3152 (-) can be evaluated at frequencies of in-
tegral multiples of 1/(2MT,) via the discrete Fourier transform. The choices of M will be
considered further in a later discussion. Thus, we define the discrete Wigner-Ville distribu-

tion based on the time samples of the signals [14] as

. ! > ” ._1(2k —n)
W, s, (nTs, T ) k;oo 51(kT5)35[(n — k)T,) exp [-—JW-—AZ’——} . (2.95)

Due to the periodic nature of discrete Fourier transform, we require that the frequency
argument [/(MT,) of Wi,;, [nT,,1/(MT,)] be such that —1/2 < I/M < 1/2. 1t is clear that
Wi, [nTs, l/(MT,)] = 0 for nTy < 0 or nT, > 2T.

When n in (2.95) is even, say n = 2p, we have

A

W (QPT” A;T)=k§wsl(kT)§2[(2p k)T]eXp[ . @A_Tz_g]

N 5 l(p — exp|—J 7rl—l-c- . .
= ¥ alo+OTIle - Brlew (i2rys) . @96)
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The last relationship of (2.96) is defined as the symmetrical form of the discrete Wigner-Ville
distribution, which we denote as Wj,3,(-). That is,

W (40577 ) = 3 30+ OIS0 - WT)ew (~i2r i) 207

k=00
for —1/2 < I/M < 1/2. Clearly, Ws,s,[pTs, l/(MT,)] = 0 for pT, < 0 or pT, > T. The
discrete Wigner-Ville distribution is sometimes defined in the form of (2.97) due to its re-
semblance to the continuous one. However, it is seen that Wj 5 (+) is a special case of
Wi,5,(-) where t is an even integer multiple of T}. In the following, we will refer to (2.97) as

the symmetric form in the time-domain.

2.3.2 Frequency-domain Representation

In this subsection, we will derive the frequency-domain representation of the discrete
Wigner-Ville distribution. When M is such that MT; > T, we can apply (A.14) with 7 =0

to obtain

Si(f + v) |
S

A similar procedure can be used to expand 5’2( f —v). Thus,

(2.98)

Ws 5, f)

=2 Z Z SI(MT>S<

7)o (5 T)
M=—00 ¢g=—00 T MT3

./°° sin tf[MT,(f +v) —m]sinnt[MT,(f — v) —q]
o TMT(f+v)—m] #[MT,(f—v)—gdq

exp[j2rv(2t — T)ldv.  (2.99)

Viewing the integral term as the Fourier transform of the product of two sinc functions, it

can be evaluated by using the convolution theorem,

/00 sinw[MT,(f +v) —m]sina[MT,(f —v) — ¢

I T ] AT o) =g SPUm - Dldv
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= (MlT )Ze"p{' MT, (Qt‘T)] exp [ﬂ“< NT, )(zt )]
. /_oo rect (MT > rect (%) exp [—j27r (2 - ———) ] du

1 2
= <MT3) exp [J "MT, (2t - )]
sinw[2f — (m + q)/(MT,)|(MT, — |2t = T|) 20 - T
' [2f — (m + q)/(MT)] rect ( OMT, ) ‘ (2.100)

Putting (2.100) into (2.99) and letting I = m + ¢, we have

W3 5t f)
— (TI?T_)? Z {m;w Si (MT ) 5'2 (IMT ) exp (.727r2$; lt)}
st S T (8.

The term in the braces in (2.101) was defined in [14] as the continuous-time, discrete-

frequency Wigner-Ville distribution, which we will denote as Wy (). That is,
122

l = 2m — 1
Wféﬁz (t, m) Z S (MT > S; (MT )exp (J27r T t) (2.102)

m=-—=00

However, as seen in Section 2.2, the Fourier transforms that are directly available to the
receiver are the ones computed from the discrete-time samples, instead of the Fourier trans-

forms of the continuous signals. In other words, the Fourier transforms available are

M-
S; ( A;”T) =T, kgo 5(kT,) exp (—j27r-n;4—k) i=1,2. (2.103)

At t = pT,/2, where p is an integer, note that W; (-) can be expressed as
1

2
ol |
Wfslsz( 2 ’MT)

= exp ( ﬁr—) Z 3, ( ) 3 (IA; m) exp (j27r%£> . (2.104)

m==00

It is seen from the above relationship that Wfs s (-) can be evaluated at points of time that
1°2

are integral multiples of T,/2 via discrete Fourier transform techniques. Thus, we define the
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frequency domain representation of the discrete Wigner-Ville distribution as

. [ 1 m Lfl—m . (2m—=1Dn
Was, <”Ts’ MTs) MT? Pl (MT )é (MT )e"p [”T] - (2105)

m=0

Due to the periodic nature of the discrete Fourier transform, we require that the arguments
nT, and I/(MT,) of Ws,35,[nTs,1/(MT,)] be such that 0 < n < M and —1/2 < I/M < 1/2.

When [ in (2.105) is even, say | = 2q, we have

. 2q> (m) *( m> . (2m —2¢)n
MT:; W5152 (nT,, UT Z 5'1 T S. T exp ]7r——————M

m—-O

= Z .5'1 (q]JTm) S* ( ]\;T )exp (jZ’R‘%) . (2.106)

The last relationship of (2.106) is defined as the symmetrical form frequency-domain repre-

sentation of the discrete Wigner-Ville distribution, which we will denote as WS'I 5,(*). That

is,

W, s, (nTs, MT. ) = MlTsz 1‘:2:—%1 S (Z\J_Tf) S'* (]W_Tk) exp (jQWan) , (2.107)
where 0 < n < M and —1/2 < ¢/M < 1/2. The frequency-domain discrete Wigner-
Ville distribution is sometimes defined in the form of (2.107) due to its resemblance to the
continuous one. However, it is seen that ng 3, (*) is a special case of ng 5,(+) where the
frequéncy is even multiples of 1/(MT,). In the following , we will refer to (2.107) as the

symmetric form in the frequency domain.

2.3.3 Relationship between Continuous and Discrete Wigner-
Ville Distributions

In the following, we consider the sampling criteria for producing the discrete Wigner-
Ville distribution without aliasing. Then, we derive the procedure for reconstructing the
continuous Wigner-Ville distribution from the discrete one. The interpolation formula is
simpler to the one found in [14] with the drawback that it can only be used to recover that

portion of the Wigner-Ville distribution which is free of aliasing.
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Sampling criteria

From the time-domain definition of the discrete Wigner-Ville distribution, we have

3 ! S ) . 1(2k —n)
Wiz, (nTsa M_Ts) = k;oo $1(kT;)33[(n — k)T,] exp {“]W—M—]

~ kzz_:oo { /_ ‘: 5,(1)&(nT, — ) exp l-ﬁ%} §(r — kTs)dT}

= /_o; 31(7)83(nTs — 7) exp [—jw%} { >4 'r—kT)}dt

k=—00

_ / (P)E(nT, _T)exp[ jw%] {Tl {Zj exp (j27r%)}dr. (2.108)

$ k=—o00

The product of the exponential terms in the last relationship of (2.108) can be manipulated

in the following manner:

. (21 — nTy) " kT
eXp | ~jT Ty | exp {J2T

(1 — kM)(r — nTs/2)] exo (jzw an_T/Q)

= exp [—-j27r MT, MT,

= (—=1)*" exp [—j27r(l - kM;E;T: nly/ 2)] . (2.109)
Thus,
Wiz | nT !
5182 8 MTS
_ 1 & kn [ 5 [y o (I = kM)(r = nTs/2)
=7 kzz_:oo( 1) Lm 51(7)8(nTs — 1) exp[ 72 M. dr
1 & nT, | —kM
= 1 k’ni 545 ._._i,
2T, k_Z_joo( )W, 2( 2 2MT3)
1 nT [ 1 & kn nTs | —kM
= a1, Va (T’mn) o, ,Z;o (=1) Ws’”( 2 2MT3) (2.110)
k#0

Recall that Wj 5 (-) has an extent of 2B in the frequency-domain. Therefore, to avoid
aliasing it is seen from (2.110) that the samples used in calculating Wi, s, (+) need either to
be obtained at a rate higher than twice the Nyquist rate of the signals, or obtained from

interpolation [29].
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Example 2.3

Consider the same example used in the discussion of aliasing with respect to the discrete
ambiguity function. In Figures 2.9 through 2.12 we show the effects of aliasing in the discrete

auto-Wigner-Ville distribution for the complex envelope

sin 27 Bt .
5 Br = 2Bsinc(2Bt). (2.111)

51(t) = 5(t) = V2B

Using the definition given in (2.85), or equivalently (2.86), it is a straightforward analysis to

obtain the continuous Wigner-Ville distribution of §():

Wi(t, f) = 2rect (-2-%) —(B—Tlfl)sinc 44(B — |£1)]. (2.112)

The result is plotted in Figure 2.9 for B = 1. The discrete Wigner-Ville distribution Wg(t, hH,

using a sampling frequency equal to twice the Nyquist rate, is shown in Figure 2.10. Note the

periodicity of Wg(t, f) along the frequency axis and the lack of aliasing. When the sampling

rate is dropped to 1.8 and 1.5 times the Nyquist rate, noticeable aliasing occurs, as shown

in Figures 2.11 and 2.12. Aliasing becomes more severe as the sampling rate is decreésed. O
The discrete Wigner-Ville distribution in the frequency-domain was defined as

. ! 1 M. rm\a fl-m . (2m—=0Dn
W (nT“"’ MTs) - 313 2,5 (37 (MTs ) o [J ~—u | @1

m=0

where 0 < n < M and —1/2 < I/M < 1/2. Since 5,(-), S3(-), and the exponential function
are all periodic in frequency with period 1/T, ng 3,(+) is also periodic in frequency with
period 1/T,. Note that the discrete Fourier transforms $;(-) and S,(-) consist of periodic
repetitions of Si(-) and Sy(-), respectively. Since both S;(:) and Sy(-) are assumed to be
limited to (—B, B), ng 5,(+) has terms separated from each other by integral multiples of
1/T; in the frequency dimension, and each of these terms has an extent of 2B in the frequency

dimension. In other words, Wy ¢ (-) is free from aliasing in the region from —1/(2T,) + B

to 1/(2T,) — B in the frequency dimension.
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In the region where there is essentially no aliasing due to undersampling, we have

s () 5 () o 222

2 8 (MT ) s (Z}n) exp [m(z—mﬁ"ﬁﬁ} , (2.114)

where |I|/(MT;) < [1/(2T;) — B]. Employing the same procedure as that used in deriving
(2.109) we have

M1T2 E 5 (MT)S* (I—T )e"p[ (2m1\;l)n]

) e (2~ 5) ]

i, £ {2505 (57m
(=1ym / 518 ( MITS - 1/)

100
_EZ

. l
- exp [ ( 2MT3) (n— mM)T,] dv
1 & mig,  [(o=—mM)T, 1
2Ts m;w( 1) WS]Sz ( 2 ? 2MTS) . (2-115)

Hence, for |I|/(MT,) < [1/(2T;) — B]

. l mi (n—mM)T, 1
Ws.s, ("T“’ MTs) 2T, m;w D" Was, ( ) ’2MT3)
1 nT, l
= 37,V e (T’_QMTS)
1 & ml (n—mM)T, I
+ o, m;m( 1) Wsm( 5 ’2MT3)' (2.116)

k#0
Note that W, g, (-) has an extent of T' in the time-domain. Therefore, to prevent aliasing it

is seen from (2.116) that M needs to be chosen such that M > 2T/T,. The procedure to

recover W, 5,(+) from Wi, ;,(+) is considered next.

Reconstruction of the continuous Wigner-Ville distribution from the discrete

Wigner-Ville distribution
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Recovery of the continuous Wigner-Ville distribution from the discrete one was considered
in [14]. However, the following analysis will show that the interpolation formula can be
simplified, but with the drawback that only that portion of the Wigner-Ville distribution
that is free from aliasing can be recovered.

When the sampling rate is such that 1/T; > 2(B + |f|), we can utilize (A.6) and have

51(t + 7) exp(—j2r f1)

= exp(j27 ft)3:1(t + ) exp[—j2r f(t + )]

= exp(i2nft) Y §1(KT.) exp(~j2nS ’“Ts)SiifEt[(it)T/)z/ﬂf i—zc]k]'

k=00

(2.117)

A similar procedure can be applied to expand §2(¢t — 7) exp(—527 f7). It follows that

Wanlt./) =2 3 3> 6u(KL)53(T.) expls2n f(k — p)T,)

. ZOZ;:;[?t +7)/Ts — k] sinz[(t — 7)/Ts — p] i »
/—oo w((t+7)/Ts— k] =[(t—7)/Ts — p] dr. (2.118)

Evaluation of the integral can be carried out in a manner similar to that used in deriving

(2.72). Thus, we have

Wan(t ) =2T, 3 3 51(kT)5(T,) exp[—j2n f(k — p)T)

k=—00 p=—00

sinm[2¢/T, — (k + p)]

wt/T, — (& + p) (2:119)
Lettirng n =k -+ p gives
Want ) =2T 3 3 5(kT)5](n — K)TL] exp[—j2r f(2k — n)T)]
n=—00 k=-00
sinw(2t/Ts — n)
- (2.120)
Thus, for |f| < 1/(2T) — B, we have
Wi s, (ﬁgf_, f) = 2T, i 51(kT,)35[(n — k)T exp[—j2x f(2k — n)Ty) (2.121)

k=-00
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and

. nT, 1 5 l
Wiy, (T’ 2MTS> = 2T, Ws,3, (nTs7 M—Ts) : (2.122)
Substituting (2.121) into (2.120) gives

nT, sinw(2t/Ts —n)
Wi (t, f) = Z Wsm( 5 ,f) r@t T =) (2.123)

n=—oo

for |fl < 1/(2Ts) — B.
When M is such that MT, > (T + |t|), we can apply (A.14) and have

S1(f + v) exp(j2nvt)
_ exp(—2r f)8:(f + v)explin(f + v

= exp(— gzvrft)m_Z_)w i (MT ) CXP ( MT, )

exp [—jﬂ' (f A;”T) T] S";&%f}fi t)”)_:n’r]. (2.124)

A similar procedure can be used to expand Sy(f — v)exp(j27vt). Thus,

Wes(tf)=2 35 % & (MT)S* (MT)eXp[” MT, (2t+T)]

m=—00 g=—00

./oo slnﬂ'[MTs(f + l/) ]sm W[MTS( — 1/) _ q]
oo TMT(f+v)—m] =MT,(f—v)—q

exp(—j2nvT)dv.  (2.125)

The integral can be evaluated in a manner similar to that used in deriving (2.100). Thus,

we have

W58 f) = 1\42T i Z Sl(MT)“q*(MT)eXP(ﬂW Mth)

8§ g=—o0 m=-00

'sm 7[2MT,f — (m + ¢)][1 — T/(MTs)].

T[2MT,f — (m + ¢)] (2120
Letting | = m + q gives
ST LR S ()5 (l - ) exp (3273 - lt)
MT, 2~ = MT, MT, MT,
sinm(2MT,f — D1 — T/(2MT,)} (2.127)

T(2MTsf — 1)
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At f = 1/(2MT,),

l
ng §2 (t) 2MT3)

=2[1‘Z§?’MT3)] T §1< ms) §;(l_m) exp [jzww]. (2.128)

m=—o00

Then,

nT, l
Wss, (T 2MT, )

_ 2 —ZEZMT )] E 3, (MT)S* (IA;T )exp [jw%;—)ﬁ] (2.129)

m=--00

where |nT,| < MT, — T. Substituting (2.129) into (2.127) yields

nT, 1 s nT, l
W§1§2 (T’f) = ]-—T/(2MT3)‘IZ°° WS152 ( 9 72MT5>

sinm(2QMT, f — 1)[1 — T/(2MT,)]
' T(2MT,f — 1)

(2.130)

where |nT,| < MT, —T.
Using the fact that Wg 5 (-) = Ws,5,(-) and putting (2.130) into (2.123), we have

1 x e nT, 1
Waa(t, f) = 1-T/(2MT,) 2 2 Wi, (T 2MT3>

3/ n=—00 |=—c0
sinw(QMT,f — 1)[1 — T/(2MT,)]sinx(2t/T, — n)
. r(2MT,f - 1) 7(2t/Ts —n) -~ (2.131)

Thus, substituting (2.122) into the above relationship, the continuous Wigner-Ville distribu-
tion can be reconstructed from Wij,;, (+) for the region |f| < [1/(2T,)—B] and [t| < (MT,—-T).
Specifically, for |f| < [1/(2T,) — B] and |t| < (MT, — T),

Waan(t, f) = T/(2MT > ZW“”( MIT)

n=-00 [=0
sinT(2MT,f — 1)[1 — T/(2MT,)]sinx(2t/T, — n)
' T(2MT,f — 1) ©(2t/T, —n) (2132)

Note that at points (nT,l/(MT)) in the time-frequency plane, where n and [ are integers
and |t| < (MT, = T) and |f| < [1/(2T,) — B], (2.132) reduces to (2.122) as expected. It
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should be pointed out that at an integer multiple of T, in time or an integer multiple of
1/(MT;) in frequency, one of the two sinc functions in (2.132) turns into a Kronecker delta.
Thus, interpolation for a cut in frequency or in time using (2.132) involves only one sinc
function in this case. This is the same procedure used in interpolating any one-dimensional
function. On the other hand, at an integer multiple of T, in time or an integer multiple of
1/(MT,) in frequency, none of the two sinc functions in the interpolation formula given in
[14] reduces to a simple Kronecker delta, but one of them changes into a function involving

the variable to be interpolated. Therefore, (2.132) is simpler to implement for the region

lt| < (MT, — T) and |f] < [1/(2T.) — B].

2.4 Discussion

In this chapter we have derived the discrete ambiguity function and the discrete Wigner-
Ville distribution in both the time- and frequency-domains. Relationships between the dis-
crete ambiguity function and the continuous one, and between the discrete Wigner-Ville
distribution and its continuous counterpart were examined. Sampling criteria were also ana-
lyzed. It was concluded that the discrete-time signal samples used in generating both time-
frequency distributions have to be obtained at twice the Nyquist rate to prevent aliasing.
When this sampling criteria cannot be satisfied due to hardware limitations, interpolation
of missing signal samples is needed. In generating the frequency-domain representation of
both time-frequency distributions the sampling rate has to be twice the Nyquist rate and the
sampling process has to be twice as long as the signal’s duration. Procedures to recover the
continuous time-frequency distributions from their discrete counterparts were given. These
procedures are simpler than the ones previously derived. They can be used as long as the
sampling rate is greater than the Nyquist rate and the observation interval is longer than
the signal’s duration. The restriction is that they can only be used to recover those portions

of the time-frequency distributions which are free from aliasing.
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Chapter 3

Discrete Time-Frequency
Distribution Based Radar Receivers

Radar detection and estimation procedures using either continuous or discrete obser-
vations in the presence of additive white Gaussian noise were developed in the previous
chapters. The conventional optimal receiver consists of a matched filter/correlator followed
by a square law device. For this type of receiver, the ambiguity function is employed to
assess the ability of the transmitted waveform to satisfy the requirements for detection,
measurement accuracy, resolution, ambiguity, and clutter rejection [30]-[32].

In recent years researchers [6]-[10] have shown that a receiver based on the Wigner-Ville
distribution presents an alternative to the conventional receiver. This alternative not only
retains the optimality but also possesses other merits. For example, the receiver based on
the Wigner-Ville distribution will enable the estimation of unknowns when the problem is
not completely specified. In addition, noise suppression using time-variant filtering in such
receivers when the signal waveshape is unknown is more effective [9]. However, research
efforts devoted to this subject thus far have been restricted to the continuous case, and the
form proposed for the Wigner-Ville distribution based receiver computes the test statistic in
a point by point manner in the hypothesized delay-Doppler plane.

In this chapter we consider a variety of alternatives to realize the optimum discrete
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receiver. First, we consider how to use the discrete Wigner-Ville distribution to realize the
optimum discrete receiver. The derivation demonstrates the potential for aliasing. It is
shown that aliasing can be circumvented with a proper sampling rate depending on the form
of the discrete Wigner-Ville distribution on which the receiver is based. It is also shown that
instead of generating the test statistic point by point in the hypothesized delay-Doppler plane
as derived for the continuous case in the literature, a more efficient estimation procedure
for these types of receivers is possible. In Section 3.2, we consider another approach for
implementing the receiver based on the discrete time-frequency correlation function. This
method has a computational advantage over the one based on the discrete Wigner-Ville

distribution.

3.1 Discrete Wigner-Ville Distribution Based Receiver

In this section we derive the procedure for implementation of the optimum receiver based
on the discrete Wigner-Ville distribution. The signals considered will be assumed to be
essentially limited both in duration and frequency to [0,T") and (—B, B), respectively. Also,

the sampling rate will be assumed to be at least twice the Nyquist rate.

3.1.1 Time-domain Realization

As described in Chapter 1, the optimality of the continuous Wigner-Ville distribution
based receiver is established via Moyal’s formula. It states that the magnitude-square of the
inner product of two signals, say 3;(t) and 32(¢), is equivalent to the inner product of the

Wigner-Ville distributions of 31(¢) and 8;(t). That is,

(o o]
— 00

It is obvious that when 3, () = 7(¢) and §2(t) = 3(¢t — 7u) exp(j27 fp,t), the left-hand side

/ / Wi (t, £YWZ (¢, f)dtdf. (3.1)
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of (3.1) is the test statistic used by the optimum radar receiver as shown in Chapter 1. For
different values of 7y and fp, in the reference signal, the receiver calculates the left-hand
side of (3.1) and compares the result with a threshold to perform detection. If a target
is declared present at (7w, fp,), the corresponding values of 7y and fpy are used as the
estimates of the actual delay and Doppler. However, the right-hand side of (3.1) indicates
that the above procedure can be equivalently implemented by matched filtering the Wigner-
Ville distributions of the received signal and the reference signal. Thus, the optimality of
the receiver based on the continuous Wigner-Ville distribution is established.

Since optimality of the receiver based on the continuous Wigner-Ville distribution is
established through Moyal’s formula, it is reasonable to believe that receivers based on the
discrete Wigner-Ville distribution can be analyzed in a parallel manner showing that the
test statistic can be equivalently calculated by matched filtering two discrete Wigner-Ville
distributions. However, because of aliasing, the discrete versions the Moyal’s formula in the
time-domain and the frequency-domain, as derived in [13], are not as useful in the realization
of the optimal receiver based on the discrete Wigner-Ville distributions. The time-domain
discrete Moyal’s formula derived in [13] is phrased in terms of the symmetric form discrete
Wigner-Ville distribution, which was defined in (2.97). Here, we rederive the results given

in [13] to show how the aliasing problem arises and how it can be circumvented.

Receiver based on the symmetrical form discrete Wigner-Ville distribution

Denote the sampling interval by T, and let N = T'/T,. For convenience, we assume that
N is an even number. This assumption does not affect the generality of the results. Using
the symmetric form of the Wigner-Ville distribution as defined in (2.97), the inner product
of W;, and W;, can be expanded as

N-1 N/2-1 B l _ l
Z Z W51 (kTs, ‘N’i) W§2 (kTa, m)

k=0 I=-N/2
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00 N/2—-1 B l B l
ot 9 e

k=00 I=—N/2
= io zg:v; {p_io 81((k + p)T5]31[(k — p)Ts] exp (—ﬂw-lﬁ) }
. {io 52l(k + )Tk — n)T,] exp (— j27r-l]%) }

[ee)

=Y S Y alk+ TSk~ TSIk + )Tk - n)T.]

k=-—00 p=—00 N=—00

. { 3 e [iel2 ) } | 32)

=-N/2

The summation of the exponential term in the last line of (3.2) can be evaluated by using

Poisson’s sum formula, and we have

NJ2-1

> exp [jznﬁ%viﬂ] = Nép (3.3)

I=—N/2
where §,, is the Kronecker delta. Thus, after summing over n, (3.2) can be written as

-1 N/2-1 l _ l
Z > W, ( o NT ) w; (kTs, NT)

k=0 I=—N/2
=N3> X Z {51((k + p)T5[(k + )T} {31k — DTSk — )T} (34)
k=—00 p==—00 N=—00
Letting k' = k — p in the summation on the right-hand side of (3.4), we have

N-1 N/2-1 l _ [
> ¥ Wsl( s,NT)W§2 (kT,, NT)

k=0 I=—N/2
= Nkl_f_: _f;j (G1[(F + 20)TL)8I(K + 2p)T]} {3 (K T,)53(K'TL)} " - (3.5)

Summing the even and odd terms with respect to k' separately, i.e., summing over k' =2n

and k' = 2n + 1 separately, and letting m = n + p, we have

N-1 N/2-1 l B l
> 2 W31( ”’NT)W§2 (kT”NT) .

k=0 I=—N/2

N Y Y (52mT)5@mT)} {52015 (T}

m=—0o0 N=-=00
o0

NS {alem + DLIEEm + DT} 520 + DT5GE + DT (36)

m=—00 n=-—00

(6]




Note that the first term on the right-hand side of (3.6) is a summation of the products of
those even-indexed samples of 3;(¢) and 3,(¢), and the second term involves odd-indexed
samples. Therefore, it is equal to summing the products of all samples of 3, (t) and 32(t) and
then subtracting those products of odd and even-indexed samples. Consequently, we have
R (125 ) W (2.5 )
k=0 1= /2 sl “ NT,) "> * NT,

=3 Y Y BmLGmD)) (5 (TS

M=—00 N=~00

N (o ¢] oo
o 2 2 (CUMT s (TS (mT)} {E (e )53 (nTs)}" (3.7)
Substituting exp(—jzm) for (~1)™ and exp(—jrn) for (—1)*, we rewrite (3.7) as

N-1 N/2-1 ! B I
o> Wy (kTs, NT. ) Wi (kTs, NT)

k=0 I=—N/2

= _|(81,Sz>| +—“ Z Z {81(mT,) [exp(—jmm)35(mT,)]}

m=—00 N=—00

-{81(nTy) [exp(—jnm)35(nT;)]}" (3.8)
where () denotes the inner product.
Letting 3;,(mT;) denote the frequency shifted sequence exp( grm)3a(mTs), we write

N-1 N/2-1 l I N o, N o )

k=0 I=—N/2

Let 8, = # and 8, = 5y. Then, the first term on the right-hand side of (3.9) is the test
statistic for optimum detection and estimation as specified by (2.21) of Chapter 2. In the
absence of the noise, the test statistic is maximized by a reference signal matched to the
target return. On the other hand, because of a shift in frequency by one half of the sampling
frequency, the reference signal maximizing the test statistic will not necessarily maximize
the second term on the right-hand side of (3.9). Thus, the reference signal giving rise to the
maximum of the right-hand side of (3.9) is not necessarily the one most accurately matched
to the target return. It follows that matched filtering between W; and W, is not always

optimum. In the following, we will establish the condition under which the second term on
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the right-hand side of (3.9) reduces to zero and consequently matched filtering W; and Wj,,
is equivalent to calculating |5%,#2.

First, we briefly mention a useful property of the inner product of two vectors of signal
samples. Denote the vector of discrete-time samples of 3;(¢) by 8;, ¢ = 1,2, and denote the
vector of discrete-frequency samples of Si(f) by Si, ¢ = 1,2. As shown by (A.17), when
the sampling rate is at least the Nyquist rate and the sampling lasts longer than the signal
duration, we have

(81,82) = NT%(3,, 5,). . (3.10)

Using (3.10), we can rewrite the second term on the right-hand side of (3.9) to obtain
N/2-1
]:z%ll-/zj:vm Wsl ( s NlT ) WS:; (kTs, NlT ) ];[ |(§1,§2)|2 + 2]\}T4 ‘(51,52)«)|2 (3.11)
where S, ; denotes the vector of discrete-frequency samples of 8. It is clear that (5'1, S, ;)
reduces to zero when S; and S, ; do not overlap each other. In particular, denoting the
frequency shifted reference samples by 3z, and denoting the vector of its discrete-frequency

samples by S Hy, We have

N-y N2 ! ! N 1 = 5 2
S % W (k) W (M) = 0 4 g RS 2

k=0 I=—N/2

For the second term on the right-hand side of (3.12) to reduce to zero in the absence of noise,
it is required that the spectra of R and S H, be non-overlapping. Consequently, [1/(2T5) +
fpy] — fp. is required to be greater than 2B, or equivalently, 1/(2T,) > 2B — (fp,, — fp.)-
Since (fpy — fp.) can range from —2B to 2B, it follows that 1/(2T}) > 4B is needed. In

other words, in the absence of noise,

5 o o) -
W | kT, wr kT, = = |(#,3x)| (3.13)
k=0 I==N/2 NT " NT 2

when the sampling rate is greater than four times the Nyquist rate of the transmitted signal.
The foregoing analysis shows that matched filtering Wi and W;, is equivalent to the

processing of |(7,8g)|?> when the sampling rate is greater than four times the Nyquist rate
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of the transmitted signal. Furthermore, according to (2.58) of Chapter 2, a sampling rate
of at least twice the Nyquist rate of the transmitted signal ensures that the processing
of |(#,8g)|* is free from aliasing in its ambiguity function. Thus, with a sampling rate
higher than four times the Nyquist rate of the signal, the receiver based on the Wigner-Ville
distribution is not only optimal, but also the test statistic it produces is free from aliasing in
the ambiguity function. The requirement on the sampling rate nonetheless imposes a severe
burden on implementation of the receiver. In the following, we consider the possibility of a
less stringent alternative.

From (2.110) of Chapter 2, it can be seen that W;(-) consists of repetitions of Wj(-)
displaced in frequency by 1/ (2T,). Sampling at a rate higher than twice the signal Nyquist
rate only introduces zeros in the frequency dimension between the adjacent replicas of Wj(-)
in the discrete Wigner-Ville distribution. Assume that 1/T, = 4B and N = T/T,. When
sampling is done at four times the signal Nyquist rate, there are N zeros in the frequency
domain between adjacent replicas. Thus, augmenting N zeros in the frequency domain
between replicas of Ws(+) in Wj(-) that was obtained by sampling the signal at twice the
Nyquist rate has the same effect as obtaining W;(-) by sampling the signal at four times
the Nyquist rate. Let Wj(-) denote the result of appending zeros to W;(-) which is obtained
by sampling the signal at twice the Nyquist rate. The difference between Wj(-) and Wj(-)
which is obtained by sampling the signal at four times the Nyquist rate is that the former
has a time increment twice as large as the latter. Next, it will be shown that using Wi(-)
instead of Wj3(-) which is obtained by sampling the signal at four times the Nyquist rate still
results in the optimum receiver regardless of the aforementioned difference.

Let T! = T,/2. For simplicity, we use W;[kT,1/(2NT,)] to denote the discrete Wigner-
Ville distribution obtained from signals that have been sampled at four times the Nyquist

rate, i.e., with 1/T = 8B. For —N/2 <1 < N/2 ~ 1, it follows that

! ! .1
W; (kTs, NT) /A (kTs, NT) A (2kT,, 2NT')' (3.14)
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For —-N <1< -N/24+1and NJ2<I< N -1,

! o1
Wi (kTs, NT) W (2IcTs, 2NT,) = 0. (3.15)

Then we have

N-1 -1 . l - l
> Wi, | kT, FT‘) Wz (kTs, NT)

k=0 [=—=N
= f: N_IW 2kT" l W | 2kT" l
- P INT!) % 2 ONT!

=~ { io: 5:1[(2k + p)T,)81[(2F — p)T;] exp (_]27TZI_N—) }

p=—00

=z

I
Me

: { i 5:[(2k + n)T,]55((2k — n)T;] exp ( TN 2IN) }

=—00

=2N Z Z 5:1[(2k + p)TI51[(2k — p)TH)55((2k + p)T3)3:((2k — p)T,].  (3.16)

k=-—00 p=—00

Letting k' = 2k — p in the last step of (3.16), we have

N-1 N-1 l . l
W, ( o NT) w;, (kT_.,, NT)

k=0 I=—-N
o 3 z (&l2F + 20 TISIEE + 29T} (52K T3 EHT)Y
oV 35 (AT 4 P G TISETY
= 2N |(31, 32)°. (3.17)

Thus, W;(-), instead of Wj(+) which is obtained by sampling the signal at four times the
Nyquist rate, can be used to implement the optimal receiver. However, unlike (2.21) of
Chapter 2, which is useful in calculating the test statistic for various Doppler values at a fixed
~ delay with one discrete Fourier transform calculation of the products {F(kT,)3*(kT, — nT})},
the receiver implemented using (3.17) only produces a test statistic at one point in the
delay-Doppler plane specified by the hypothesized delay and Doppler of the reference signal.

Therefore, (3.17) needs to be further modified in order to make it more useful.
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Recall that 55(t) is a time delayed and frequency shifted version of §(¢). Let 5x(t) =
5(t — pT;) exp[j2mqt/(NT,)], where p,q are integers. The relationship between Wi, (-) and

5(+) is given by

Wi (nTs, N’T ) f; 3ul(n + B)T]83[(n — k)T.] exp ( jor sz)

= l(n ~ )% I_J;Tﬁ] ' (3.18)

The above relationship indicates that W;, () can be obtained by shifting W;(:) in the time
and/or frequency dimensions. It follows that W;,,(-) can be obtained by shifting Wi(-) in the
time and/or frequency dimensions and appending the result with zeros. Thus, from (3.17),

we have

o 5 1 N-1 N-1 . . l . k l
5l =55 2 2 W"<T”NT)W (T FT‘)

k=0 I=—N
1 N-1 N-1 . l 2q
= T 7 8y Arm by k— E2) .

The above result shows that the test statistic can be generated by correlating WT() and
Wi(+). By fixing the shift in one argument and convolving with the other one, a cut in the

test statistic of either delay or Doppler can be produced.

Receiver based on the general form discrete Wigner-Ville distribution

As mentioned at the beginning of this subsection, the time-domain discrete Moyal’s
formula was originally derived in terms of the symmetrical form discrete Wigner-Ville distri-
bution. It was found thatﬂ there is an aliasing problem to be dealt with in matched filtering
two symmetrical form discrete Wigner-Ville distributions. In the following, we examine the

possibility of realizing the receiver based on Ws() by deriving the discrete Moyal’s formula
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in terms of Ws() To distinguish this case from the one where the symmetrical form is
considered, we refer Ws() as the general form.
Consider the following.

2N-1 N/2-1 l i
Z Z W31 ( 89 NT ) W (kT-‘H N_st)

k=0 I=—N/2

o N/j2-1 o _
> X {E 51(pTy)8;((k — p)Ts] exp [_ﬁl@?N_’“)]}

k=—0c0 I=—N/2 \p=—0

o 12g—- k)]
. { > Sa(qT)5((k — g T exp [“”qT} }

g=—00

N Y Z 51(pT,)331(k — p)Tu)53(pT,)32[(k — p)T.]

k=—00 p=—00
= N |(31,8)° - (3:20)
From (3.20), it follows that a receiver implemented such that it performs matched filtering
betweeﬁ W;() and Wgﬂ(-) produces the test statistic as required for optimum detection and
estimation. Sampling at twice the Nyquist rate is needed for this receiver to prevent aliasing
in the ambiguity function of the test statistic. However, a receiver of the form of (3.20)
is only capable of producing the statistic at one point in the delay-Doppler plane. Again,

assume that 3y (t) = 3(t — pTs) explj2rqt/(NT)], p, q are integers. It follows that

)=
(kTs’ NT) i Su(nT,)3y((k —n)T]exp[ ; l_(_2n_)]

n=—00 N
i p)T5)8*[(k — n — p)T,] exp [—jw (I— 2q)1£[2n - k)}
B _z_: 3(nT,)5"[(k — 2p — n)T,] exp [—jw(l — 2q)(2?\7— k+ QP)]
- [(k T %] ' (3.21)

The above relationship indicates that Wi, (-) can be obtained by shifting Wi, () in the time

and/or frequency domains. Thus, applying the above result to (3.20), we have

. 1 2N-1 N/2-1 I . I
ol =5 Y 3 W (kTs, NT)WEH (kTs, NT)

k=0 I=—N/2
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125”%‘% ( l ) [ [ -2
= — Wi | KTy, —= | Wr (k—2p)Ts,———]. (3.22)
N k=0 [=-N/2 NTs NTS

Therefore, the test statistic along a cut in either delay or Doppler in the delay-Doppler plane
can be produced by convolving W;() and Ws() Next, we give an example to illustrate the

effect of sampling rate on the discrete Moyal’s formula.

Example 3.1

In this example we examine the effect of sampling rate on the discrete Moyal’s formula by
way of convolving Wj(-) with itself and convolving W;(-) with itself under different sampling
rates. This is the same as the computation of the test statistic using (3.19) and (3.22) when
there is no noise such that # = 8. In other words, the result is the calculat/ion of the discrete
ambiguity function of 8 based on (3.19) and (3.22). The signal complex envelope is assumed

to be

5(t) = \/235%31 — V/2Bsinc(2Bt). (3.23)

This is the same waveform used in the previous chapter in demonstrating the dliasing effects
in the discrete ambiguity function and the discrete Wigner-Ville distribution. The one-sided
bandwidth of this signal is assumed to be B = 1Hz. The Nyquist rate is 2Hz. The sampling
process is assumed to take place in the time interval from -0.8sec to 0.8sec. For comparison,
Figure 3.1 is plotted for és() with a sampling rate of twice the Nyquist rate. With the same
sampling rate, Figure 3.2 is plotted for the convolution of W;(-) with itself. The aliasing
effect is clearly shown in Figure 3.2. In Figure 3.3, the result of raising the sampling rate to
four times the Nyquist rate for the convolution of Wj(-) with itself is plotted. In Figure 3.4,
we show the result of convolving W;(-) with itself . Finally, the result of convolving W;(-)
with itself with twice the Nyquist sampling rate is shown in Figure 3.5. Note the lack of
aliasing. O

In the analysis, thus far, we have shown that the test statistic for optimum detection

and estimation is |(#,8g)|>. The optimum receiver is conventionally built as a direct-form
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Figure 3.1: Test statistic generated from the conventional matched filter based receiver with
twice the Nyquist rate sampling
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Figure 3.2: Test statistic generated from the receiver based on the symmetrical form discrete
Wigner-Ville distribution with twice the Nyquist rate sampling
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Figure 3.3: Test statistic generated from the receiver based on the symmetrical form discrete
Wigner-Ville distribution with four times the Nyquist rate sampling
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Figure 3.4: Test statistic generated from the receiver based on the symmetrical form discrete
Wigner-Ville distribution with twice the Nyquist rate sampling and zero padding
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Figure 3.5: Test statistic generated from the receiver based on the general form discrete
Wigner-Ville distribution with twice the Nyquist rate sampling
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realization of the test statistic such that it consists of a matched filter/correlator and square-
law devices. The sampling rate should be greater than twice the Nyquist rate of the signal
to avoid aliasing in the ambiguity function associated with the test statistic. The analysis
has also shown that the conventional receiver can be equivalently built such that it either
correlates Wi(-) with Wi(-) or Wi(-) with W;(-). The two functions Wi(-) and Wi(-) are
obtained by zero padding W;(-) and Wj(-) which are obtained with a sampling rate of twice
the Nyquist rate of the signal. Sampling at twice the Nyquist rate is needed if WT() and
Wi(-) are used. Comparing (3.19) and (3.22) it is seen that the use of Wj(-) or Ws(-) does
not affect the basic structure of the receiver. The test statistic on a cut along either delay
or Doppler in the delay-Doppler plane can be produced by convolving Wi(-) and Wi(+), or

convolving Wi(-) and Wj(-), over the time or frequency arguments. A receiver based on

either W;(-) or W;(+) can be built in the form depicted in Figure 3.6.

3.1.2 Frequency-Domain Realization

In this section we consider the frequency-domain implementation of the discrete Wigner-
Ville distribution based receiver. This receiver needs to compute the test statistic, as given
by (2.37), i.e., the magnitude square of the inner product of the discrete Fourier trans-
forms of the received signal and the reference signal. Similar to the previous discussion on
the time-domain implementation of the discrete Wigner-Ville distribution based receiver,
the optimality of the frequency-domain implemented receiver can be established through
Moyal’s formula. However, when it was first derived in [13], the discrete Moyal’s formula
in the frequency-domain was phrased in terms of the symmetric form discrete Wigner-Ville
distribution as defined in (2.107). This form of the discrete Moyal’s formula is not useful be-
cause of aliasing. Next, we rederive the results given in [13] to show how this problem arises
and how it can be circumvented. Since the procedure is similar to the previous discussion,

only key results will be given. A detailed derivation is placed in Appendix B.
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Figure 3.6: Discrete Wigner-Ville distribution based receiver in time-domain
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Receiver based on the symmetrical form discrete Wigner-Ville distribution

Substituting the definition of the symmetric form of the Wigner-Ville distribution as

defined in (2.107) and using (3.10), Moyal’s formula in this case is given by

N-1 N/2-1

. I . PN 1 s a2 N oo o2
E(”:;v/zwsl (kT,,NTs) W, (kT,, NT,) = 2NT54|(SI,SQ)| + 5 I(81,82,)]" (3.24)

where §,, denotes the time shifted signal samples, whose continuous counterpart has a Fourier
transform exp(—jm fNT;)S3(f). From (3.24), it is seen that the second term on the right-
hand side of (3.24) is the aliasing term which reduces to zero when 3; and 3,, are non-
overlapping in time.

Denoting the discrete symmetric form auto-Wigner-Ville distributions of
{R[m/(NT,)]} and {Su[m/(NT,)]} by Wa(-) and Ws, (), respectively, we have

Ny N l 1

_ ) _ A A
¥ wy (kT,, ﬁ) W3, (kTs, NT,) = INT3 |<R, SH)

k=0 I=—N/2

[+ 31 s (325)
where 5y, denotes the time shifted reference samples. The first term on the right-hand side
of (3.25) is the test statistic for optimum detection and estimation as specified by (2.37)
of Chapter 2. In the absence of noise, the test statistic is maximized by a reference signal
that is matched to the target return. On the other hand, because of a mismatch in delay by
amount of time NT,/2, the reference signal maximizing the test statistic will not necessarily
maximize the second term on the right-hand side of (3.25). Thus, the reference signal giving
rise to the maximum of the right-hand side of (3.25) is not necessarily the one most accurately
matched to the target return. It follows that matched filtering between Wy and W§H is not
always optimum. In the following, we will establish the condition under which the second
term on the right-hand side of (3.25) reduces to zero such that matched filtering between
Wy and Wy, is equivalent to calculating (2.37).

For the second term on the right-hand side of (3.25) to reduce to zero in the absence

of noise, it is needed that (NT,/2 4+ ) — 7, be greater than T, or equivalently, NT,/2 >

90




T — (5 — 7a), s0 that #(t) and 3,(t) are non-overlapping in time. Since the effective range
of (g — 7,) is [T, T), it is required that NT,/2 > 2T, or equivalently, N > 4T /T;. Thus,

in the absence of noise,

VN l 7 ! 1 A A 12
kz:% z—gwg Wg (kTs,ﬁ) Wg,, (kTs, NTS) = INT? (R, SH)l (3.26)

when N > 4T/T,. The above analysis shows that matched filtering between Wg(-) and
W;,, (-) is equal to the processing of |(R, Sy)|? when N > 4T/T,. As discussed immediately
after (2.58) and shown in (2.63) of Chapter 2, when 1/T > 4B and N 2 oT/T,, (R, Su)|* is
free from aliasing with respect to the corresponding ambiguity function. Thus, the optimality
of the receiver based on Wy(-) is achievable with NT, > 4T and a sampling rate higher than
twice the Nyquist rate of the transmitted signal. The requirement on N can also be satisfied
with a less stringent alternative which is indicated by the following observation.

From (2.115) of Chapter 2, it is seen that Wj(-) consists of replicas of Ws(-) displaced
in time by NT,/2. Any N such that NT, > 2T only introduces zeros in the time dimension
between adjacent replicas of W3(+) in the discrete Wigner-Ville distribution. Assume that
1/T, = 4B. When NT, = 4T, there are N zeros between adjacent replicas of Wg(+) in
the time dimension. Augmenting N zeros in the time dimension to each of the replicas of
Ws(-) in Wy(-) that was obtained with N = 2T'/T has the same effect as obtaining W(-)
with N = 4T/T,. Denote by Ws(-) the result of appending zeros in the time dimension
to Wg(-) which was obtained with N = 2T/T,. The difference between W(+) and Wy(-)
obtained with extending the sampling process to N = 4T/T, is that the former has a
frequency increment twice as large as the latter. Let N’ = 4T /T, = 2N. For simplicity,
we use W4[kT,,l/(N'T,)] to denote the discrete Wigner-Ville distribution obtained with
N = 4T/T,. Then, for 0 < k < (N - 1),

. l _ l B, 91
W (kTs, N’:F) =W, (kTﬁ) = W, (kTs, N—T—) . (3.27)
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For N < k>§ (2N — 1),

l 21
Wy (kT,, NT) W (kTs, N’T) =0 (3.28)

because of zeros in the time dimension between adjacent replicas of Wy(-). Furthermore,

employing a similar procedure to that used in deriving (3.16), we can show that

2N-1 N/2-1 ! . l 1
Z Z WS] ( 89 NT ) Wgz (kTs’ NTS) - 2NTS4

k=0 [=—N/2

(81,5 (3.29)

That is, instead of using W(+) which is obtained with N = 4T/T; in order to generate the
optimal test statistic, one can use Ws() which is obtained with N = 2T'/T;.

However, the receiver that does matched filtering between Wx(-) and WS;H(-), as indicated
by (3.29) can only produce the test statistic at one point in the delay-Doppler plane. Recall
that 3i(t) is a time and frequency shifted version of 3(t). The Fourier transforms of these
two signals are related by Sy[l/(NT,)] = S[(I—q)/(NT,)] exp|—j2n (I — q)pTs/(NT;)], where

p and g are integers. Then,

_ l 1 N/Z 1 N l+m l—
Ws,, (nTs,NT) = V72 Z Sy ( NT. ) ( )exp j27r—

s m=-N/2 NT,
1 NE [+m—gq m(n — 2p)
=m0 () (S o )
NT? ma—N/2 N
— W, |(n —2p)T,, L (3.30)
- g [\n P)Ls, NTS . - .

The above relationship indicates that WSH() can be obtained by shifting W(-) in the time
and/or frequency dimensions. It follows that WSH() can be obtained by shifting Wg(-) in the
time and/or frequency dimensions as required and appending the result with zeros. Thus,

from (3.29), we have

2N-1N/2-1 I [
]RSH] =NT} Y S Wy (TS,NT)W* (kTﬁ)

k=0 I=N/2

42N 1 N/2 ~1 l .
=2NT;} Y > Wy (kTﬁ) W3 [(k 2p)Ts, NT} (3.31)

k=0 |=—N/2
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The above result shows that the test statistic can be generated by correlating Wi(+) and
W(+). By fixing the shift in one argument and convolving the other one, the test statistic

along a cut in delay or Doppler can be produced.

Receiver based on the general form discrete Wigner-Ville distribution

As mentioned at the beginning of this subsection, the frequency-domain discrete Moyal’s
formula was originally derived in terms of the symmetrical form discrete Wigner-Ville distri-
bution. It was found that an aliasing problem exists when matched filtering two symmetrical
form discrete Wigner-Ville distributions. In the following, we examine the possibility of re-
alizing the receiver based on the discrete Moyal’s formula in terms of WS() To distinguish
this case from the one where the symmetrical form is considered, we refer to WS() as the
general form.

As shown in Appendix B that the discrete Moyal’s formula in terms of WS() is given by

N-1 N/2—l . l . l 1
Z Z ng (kTS’ N_n) WSZ (kTS’ NT3> = NT;l

k=0 I=—N/2

<‘Asla‘§2>

5 (3.32)

where 1/T, > 4B. That is, when 1/T; > 4B, matched filtering WR(-) and WSH() is
equivalent to the processing of |(f2, S m)|? as used in optimal detection and estimation.
From (2.115), it is seen that the processing of (R, Sy)|? requires that 1/T, > 4B and
N > 2T/T; to prevent aliasing in the associated ambiguity function in the test statistic.

Thus, the receiver based on WS() is optimal when 1/T, > 4B and N > 2T/T,. Generating

“the test statistic along a cut in delay or Doppler with the above receiver can be achieved

in a manner similar to that of the previous case. Again, letting Sy[m/(NTs)] = S[(m —

‘Z)/(NTs)]‘ exp|—j2r(m — q)pTs/(NT)], we have

W T Iy 1 N§:—1§ (m)S‘* l-m ,ﬂ_(2m—l)n
e \"'" NT,) =~ NT? \NT,) “H\NT, ) PTTN

s m==~N/2




Uy

]

A (Mm—aq\ a [l—m—¢q . (2m = 1l)(n — 2p)
N S(NTQ) ( NT, )exp[” N

( m) 5 (l_;q:rs m) exp [jvr(zm_H;q)("_Qp)]. (3.33)

i
l —
8

LML o o (12 m) T (m = L4 200~ 2)
“wm %, () (5o =]

. I-2q
= W; [(n ~ 2p)T., “N“TT] : (334

Thus, we have

4N—-l N/2-1 [ . l
Su)[ = NTEY Y Wy (kTs, T ) W3, (kT,, NT)

k=0 I=—N/2
= NT? W ( . )W‘f [(k—2p)T,, ] (3.35)
prar -8 R NT,] % NT,

From (3.35) it is seen that the test statistic along a cut in delay or Doppler can be obtained
by fixing the shift in one argument of Wy(-) and convolving Wx(-) and W(-) over the other
argument.

In summary, we have shown that I(fl, S H)|2 is the optimum test statistic for Gaussian
target detection. The optimum receiver is conventionally built as a direct-form realization
of the test statistic such that it consists of a matched filter/correlator and square-law device.
The sampling rate should be greater than twice the Nyquist rate of the signal, and the
sampling process should be extended twice as long as the duration of the signal in order to
avoid aliasing in the ambiguity function associated with the test statistic. The analysis has
also shown that an equivalent receiver can be built that correlates either Wz(+) with W3(-) or
Wg(-) with Ws(-). The two functions Wjy(-) and W(-) are obtained by zero padding Wa(+)

and W(-) which are obtained with sampling at least twice the Nyquist rate and extending
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the sampling process to twice as long as the duration of the signal. The test statistic along a
cut in delay or Doppler in the delay-Doppler plane can be produced by convolving over the
time or frequency arguments, respectively, either Wi (-) with Wy(-) or WR(') with WS() A
receiver based on either W3(-) or W(-) can be built in the form depicted in Figure 3.7. From
the discussion right after (2.58) it can be seen that receivers based on WS() or W(-) are
more suitable when sampling at twice the Nyquist rate is physically unattainable. This is due
to the fact that augmenting zeros to the discrete Fourier transform of the signal is equivalent
to faising the sampling rate when the discrete-time samples are originally obtained at a rate

higher than the Nyquist rate.

3.2 Discrete Time-Frequency Correlation Function
Based Receiver

Instead of implementing the receiver based on the continuous Wigner-Ville distribution,
the realization can also be based on the continuous time-frequency correlation function of
the signal, as reported in [11]. The resulting receiver is computationally more tractable for
detecting and estimating linear frequency modulated signals. Nevertheless, the estimation
procedure is still based on the concept that was developed in implementing the receiver
based on the Wigner-Ville distribution. This procedure estimates the unknown parameters
in a point by point manner in the 7y — fp, plane.

In this se;ction, we extend the results obtained in the previous section and derive a
receiver based on the discrete time-frequency correlation function. Instead of generating the
test statistic point by point in the hypothesized delay-Doppler plane, it is also shown that a

more efficient estimation procedure for these types of receivers is possible.

3.2.1 Time-domain Realization
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Figure 3.7: Discrete Wigner-Ville distribution based receiver in frequency domain
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To derive a receiver based on the discrete time-frequency correlation function, we first
derive another relationship between the discrete Wigner-Ville distribution and the time-
frequency correlation function. Using the definition of Wy, (-), the inverse discrete Fourier

transform over its frequency argument is given by
P
Z Ws1 ( 55 ) exp (]2%—)
I=—N/2 NT; N
N2 o In Ip
= Y { > 51k 4+ n)T)8[(k — n)Ts) exp (—-j27r-j—v—) } exp (j27r—)

l=—N/2 n=—oo N
o0 N/2 l _
= Z 51[(k + n)T,)8[(k — n)T3) Z exp [j27r (pN n)]
n=—00 I=—N/2+1

= N3i[(k + p)T.}31[(k — p)T5). (3.36)

N-1 [ N/2-1 I I k
. p . m

Z { Ws1 ( 55 ) exp (]271'——)} exp (—]271‘—)

k=0 li=—N/2 NT, N N

= NS il(k+ IS - T exp (—m—’f)

It follows that

k=0 N
=N 5 sl - e (-2
= Nexp (J27r————> b5, (st, NT. ) (3.37)

The above equation indicates that Wj, (+) and ¢;, (-) form a two dimensional discrete Fourier
transform pair. Using relationship (3.37), we have

N/2-1 N/2-1 I _ I
IDDY ¢sl( s,NT)qé (kTﬁ)

k=—N/2=-N/2

N/?“-l N/2—1 { 1 ( lk

= Z Z —exp | —y27— )

k=—N/21=—N/2 N N
N—-1 N/2-1

S YA (nTs, ¥ ) exp (—j%%‘) exp ( 27%?-)}

n=0 m:—N/2

1 I\ N N o Ip g\
. {NeXP ( 327r—N-) Z Z Ws, (st, NT. > exp (—]QWN) exp (JQW-JV)

p=0 ¢g=—N/2
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1 N/2 N/2 N-1 N/2 N-1 N/2

=% X X 5 Y Yy W)

k==N/2411==N/241 n=0 m=—N/2+1 p=0 g=—N/241

W (pT” _EI__) exp (j27rl(P]-v- n)) exp (j%i"ll)k)

NT, N
N-1 N/2 _ m _ m

-y > W (v 37) Wi (v ) - (3.38)
Letting #(¢) = 31(t) and 35 (t) = 3,(t), the above relationship shows that matched filtering
¢#(-) with @s,,(-) is equivalent to matched filtering Wi(-) with Wi, (-). From (3.13) it is
seen that matched filtering W;() with W;H() can be used to generate the test statistic
for optimum detection and estimation when 1/T; > 8B. Thus, (3.38) indicates that the
optimum receiver can also be realized in a manner such that it computes the inner product
of the time-frequency correlation functions of the received signal and the reference signal
with signal sampling done at four times the Nyquist rate. However, a sampling rate of four
times the Nyquist rate is a rather stringent requirement. In the following, we derive another
alternative.

As seen from (2.54) of Chapter 2, that ¢5(-) consists of replicas of ¢;(-) in the frequency
dimension displaced by 1/T,. Sampling at a rate higher than twice the signal’s Nyquist rate
only brings in zeros in the frequency dimension between adjacent replicas. Let 1/T, = 4B
and N = T'/T,. Sampling at four times the Nyquist rate brings in N zeros in the frequency
dimension. Therefore, inserting N zeros in the frequency dimension between the adjacent
replicas of ¢;(-) in (Z)g() which was obtained by sampling the signal at twice the Nyquist rate,
has the same effect as producing the correlation function by using discrete-time samples
obtained at four times the Nyquist rate. The only difference is that the time-frequency
correlation function of four times the Nyquist rate has an increment in the delay-domain
that is one half of that in the correlation function obtained at the lower sampling rate but
with zero padding. Let T, = 8B. From (3.37) it is clear that

2NZI NX:I Ws, (kT;, 2]\;];,) exp (—jQﬂ'%) exp <j27r2[—§7>

k=0 l=—N
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= 2Nexp (]2%-) s, ( . 2NT') . (3.39)
By definition, 3, (pT!,m/(2NT})) = #3,(2pT!, m/(2NT!)). Denote the resulting correlation

function after padding zeros to $,() which was obtained by sampling the signal at twice the
Nyquist rate by @3(-). Then, ¢s(pTs, m/(NT)) = $s(2pT!,m/(2NT")). 1t follows that

%, L5 (5 5g) 6 (2 57)
Wy Rar® 381 89 NT 8 NT
¥ 5 {ggew (-
= —exp | —j2r— )
k=—NlI=-N 2N

2N-1 N-1 _ , l mk
. Z:}) mg‘:N W3, (nTs, 2NT’) exp ( ]2#5\,—) exp (]27!‘2N)

1 1k 2N-1 N-1 q
{'2Tv'exp ( ]27I’ ) Z Z 3 ( 89 2NT,)

p=0 g=—-N

- exp ( ]QW'ZIW) exp (]2%5}3)}
N-

1 N-12N-1 N-1 2N-1 N-1 ,
=_J\T Z Z Z Z Z Wsl (nT3’2NTI)

=—-Nl=-N n=0 m=-N p=0 ¢g=-N

- o lp—n) . (m— gk
Wy, T"2NT’) exp []27&' 5N exp |27 A

2N-1 N-1 _
/ *
=Y 3 W <nT,, 2NT,) W”( nT!, 2NT')' (3.40)

n=0 m=—-N

The above relationship shows that the inner product between $#(+) and $§H(-) is equal to
the inner product between W;(-) and Wj,(-) which were obtained by sampling the signal at
four times the Nyquist rate. Therefore, it is seen from (3.13) that the receiver can also be
realized based on ¢;(-).

However, a receiver of the form of the first line of (3.40) is capable of producing the test
statistic at only one point in the delay-Doppler plane. Recall that the hypothesized target
return is a time delayed and frequency shifted version of the transmitted signal. Assume

that §(t) = 3(t — pT,) exp[j2nqt/(NT,)], p, q are integers. It follows that
! - lk
bi (nTs, NT. ) = Y 3u(kT,)34[(k — n)T,]exp (—]27r-ﬁ)

k=—00
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— k—qgn
= 3 Sk pTIFI(k — p— m)T.]exp [—ml e
k=—00
= ¢; (nTs, NLTS) exp (—j27r i ]—vqn> . (3.41)

The above relationship indicates that g%SH() can be obtained by shifting the frequency of
¢s() It follows that ¢;,,(-) can be obtained by shifting the frequency of ds »(+) and appending
the result with zeros. Thus, using (3.13), (3.40) and (3.41), we have

s . 1 N-1 N-1 . I . I
ol =y 3 5 b (o 7) 65 (o7 5 )
N

n=—N |==~N
LNy Y ! - Ip o qN
=% n=Z—:N 1=Z-:N ok (nTs, NTS) o3 (nTs, __NTS) exp [ﬂwQ—N] exp [—]QWW] . (3.42)

The above relationship indicgtes that a test statistic along a cut in either delay or Doppler
can be obtained by calculating the discrete Fourier transform of the product of ¢:(-) and
¢:() over the delay or Doppler arguments, respectively. Figure 3.8 gives the block diagram
of the receiver of the form of (3.42). Next, we compare the computational complexity of
the receiver specified by (3.42) with that of the receivers based on the discrete Wigner-Ville
distribution.

It is clear from the definitions of the discrete Wigner-Ville distribution and the time-
frequency correlation function that the generation of these two distributions require the
same amount of computations. Then, the complexities of the two types of receivers lie in
whether to compute the discrete Fourier transform of the product of two time-frequency
correlation functions or to compute the convolution of two Wigner-Ville distributions. Since
convolution is more efficiently carried out by applying the convolution theorem and using fast
Fourier transform algorithms for a large number of samples [28], it is evident that the receiver
specified by (3.42) is more desirable because it requires fewer discrete Fourier transforms.
For example, to generate the test statistic along a cut in Doppler at a given delay the

number of multiplications, which is the dominant factor in computational complexity, that

is required by the receiver of (3.42) consists of two (2N)? complex number multiplications
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Figure 3.8: Discrete time-frequency correlation function based receiver in time domain
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forming the product {¢#(nT,,!/(NT,))¢%(nT,,1/(NT;))exp[j2xlp/(2N)]} and of one 2N-
point discrete Fourier transform. On the other hand, the receiver specified by (3.22) requires
2N 2N-point discrete Fourier transforms, one (2N)? complex number multiplication, and
one 2N-point discrete Fourier transform. Assume that the discrete Fourier transforms are
carried out using a radix-2 fast Fourier transform algorithm. As shown in the literature
[34], (N/2)log, N multiplications are required in an N point radix-2 fast Fourier transform.
Therefore, the receiver (3.42) requires 2N? log,(N/2) less multiplications than the receiver
of (3.22). Similar conclusions can be drawn when we compare (3.42) with (3.19), or when
we compare the numbers of calculations néeded to generate the test statistic along a cut in

delay.

3.2.2 Frequency-Domain Realization

In a manner similar to that used in the time-domain realization, we can also realize the
optimum receiver based on the discrete time-frequency correlation function in the frequency-
domain. Since the procedures are similar, we give only the key results here and put the
detailed derivation in Appendix B.

Recall that the realization of the discrete time-frequency correlation function based re-
ceiver follows from the observation of the Fourier transform relationship between Wj, (-) and
¢5,(-). Therefore, we first derive the relationship between W (-) and ‘551( )

NTE (L l . mk . In
Z {Z W (kTs, N_Ts) exp (—]2#7) } exp (]27!']—\[‘)

I=—N/2 \ k=0

o mn\ - m
= Nexp <—]2W—N—) b3, (nTs, ﬁ) . (3.43)

Using the above result we can demonstrate that
N/2-1 N/2-1

_ Iy - 1
YooY és (kTa’N_Ts) 3, (kTsa N_T,)

k=-N/21=-N/2
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N-1 Nj2-1 m
- ,;) mz};m W, (nTs, N ) Wi ( T, ﬁ) . (3.44)‘
For the same reason as in the previous discussions, we conclude that the optimum receiver
can be implemented in such a manner that it computes the inner product ¢x(-) and q_SSH()
with N > 4T/T, and 1/T, = 4B. Also, it appears to be possible to find an alternative to
reduce the requirement on the number of samples as suggested by the substitution of Wj(-)
for Wy(+).

It is seen from (2.62) of Chapter 2 that @s(-) consists of replicas of #3(-) in the time
dimension displaced by NT,. Sampling the signal for longer than twice the signal’s duration
only brings in zeros between adjacent replicas. Let 1/T, = 4B and N = 2T'/T,. Sampling
for four times the signal’s duration brings in N zeros. Therefore, inserting N zeros in the
time dimension between the adjacent replicas of ¢5(-) in $5(-) which was originally obtained

by sampling the signal for twice the duration of the signal has the same effect as producing

the correlation function by sampling for four times the duration. Let N’ = 4T /T, = 2N.

From (3.43)
NI NaT ! mk In
W, (kTs, - ) exp (—1271’ ) exp (j27r—)
2 2 W \Flw, % g

= N'exp ( 327r ) ¢Sl (nTs, (3.45)

N'T, )
By definition, ¢4 (nTs,q/(N'Ty)) = égl(nTs,Qq/(N'Ts)). Denote the resulting correlation

function after padding zeros in the time dimension to qASSl() by QVSSI() Hence, we have

$s,(nTs,q/(NT,)) = 5, (nTs,2¢/(N'T,)). Thus,

N-1 N/2-1 l
Z Z ¢Sl ( saNT ) ¢S (kTsa NT)

k=—N I=—N/2
N-1 N-1 ., kT l - kT l
- b (o) 4 (475

N-1 N-1 1 N’—l N'/2 -1 In mk
= kaNzZN Wi (nTs, NT. ) exp (-—jQﬂ'N’) exp (_727rﬁ)

'n—O m-——N'/2
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1 N'=1 N2t q Ip gk *
.{N' Z E < sy N’T)eXp( ]27rﬁ) exp (ﬂWF)

p=0 g=—N'/2
2N-1 N'-1 (
_ nT,, ) W (nTS, )
2 2 W (nTomr NT,
2N-1 N-1 _
= Z_% ;N Wy, (nTs, NI, ) we (nTs, N’T) (3.46)

The last step in (3.46) indicates that the optimum receiver can also be realized by utilizing

¢35(-)-

To generate the test statistic along a cut in delay, we consider the following. Letting

Su(k/(NT,) = S[(k — q)/(NT,)] exp[—j2r(k — q)pT /(NT5)], we have
. l 1 N=, k (k—Dn
b (157, ) = iz 550 (s ) 5 () o 57
1 R (k—q\ 4 (k—1- —ln—lp
“wrr S () & () e por ==
1 X2 o(k—=q\ 4 [k—1—q¢ (k—l—q
“wm () (o ot
.Qﬂ_qn—lp
exp | j I
o l . Ip . qn
= @g (nTs,NTs)exp( ]27rN) exp<]27rN). (3.47)

The above relationship indicates that qASSH() can be obtained by shifting the phase of qzs()
It follows that qESH() can be obtained by shifting the phase of QBS() and appending zeros
in the time dimension to the result. Thus, together with (3.26), the test statistic can be

obtained by

N-1 N/21 l
|RSH] —4NT! S % ¢R<nTs, )qSSH( ”NT)

n=—N I=—N/2

4 N-1 Nzt ) . p qn
= 4NT; _Z_: _Z b5 (nTs, ) ¢S (n »NT, ) exp (]27&'—]\7> exp < j27ré—]-v—)
n=—N I=—N/2
(3.48)

A block diagram of the receiver of the form (3.48) is given in Figure 3.9. It is clear that the
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receiver specified by (3.48) has a computational advantage over those of (3.31) and (3.35)
for the same reason as discussed at the end of the last subsection. The frequency-domain
implementation of the time-frequency correlation function based receiver has the advantage
over the time-domain implementation when sampling at twice the Nyquist rate is beyond

the capability of hardware.

3.3 Application of the Discrete Time-Frequency Dis-
tribution Based Receiver

In the preceding analysis, we derived the criteria under which a radar receiver based either
on the discrete Wigner-Ville distribution or on the discrete time-frequency correlation func-
tion is equivalent to the conventional discrete-time radar receiver, which performs matched
filtering/correlation and envelope detection. As mentioned earlier, previous literature on this
subject has been restricted to the continuous case.

One of the major advantages of performing radar reception based on time-frequency
distributions is that it transfers the detection and estimation procedure into a time-frequency
space, where feature selection and time-variant filtering are easier [25]. This is most useful
in situations where uncertainty exists with regard to the complex envelope of the desired
target return. Only when the target is a nonmaneuvering slowly fluctuating point target is
its return a time delayed and Doppler shifted version of the transmitted signal attenuated in
amplitude. If the receiver has knowledge of the exact form of the transmitted signal, it can
readily generate the optimum test statistic by matched filtering/correlation and envelope
detection without the need to resort to a time-frequency distribution based method. In
practice, however, there are situations where the receiver does not have exact knowledge of
the transmitted signal. Also, the acceleration of a maneuvering target creates uncertainty

in the received target return.
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The pfoblem where the transmitted signal is unknown to the receiver arises in several
radar and sonar applications. For example, receivers that take advantage of transmitters
which are not colocated are rarely equipped with the exact knowledge of the transmitted
signal. In such cases, detection is commonly carried out in the form of energy detection.
Methods to improve this approach are of interest.

When the target is maneuvering and has high acceleration, the target return model given
in Chapter 1 has to be modified. The result is that the Doppler shift in the target return
s a linear function of time instead of a constant [32],[16]. A Doppler shift which is a linear
function of time results in a linear frequency modulated signal (Ifm). As a consequence, an
estimate of the modulation is needed for the purpose of choosing a suitable reference signal
for coherent detection. If estimation of the modulation is based on maximum likelihood
estimation, a third dimension is added to two-dimensional estimation procedures for the
delay and Doppler shift. Methods to reduce this increased burden are of interest.

Although it has been shown that the various forms of the receiver discussed in this
work are all optimal in the Neyman-Pearson sense for a nonmaneuvering slowly fluctuating
point target in an additive white Gaussian noise environment, complete knowledge of the
transmitted signal is assumed. As discussed in the last two paragraphs, there are situations
where uncertainty exists with regard to the received target return. In the following, we use
two instructive examples to illustrate that time-frequency distribution based receivers are
more versatile in dealing with the aforementioned problems because of their ability to extract

information about the received signal.

Signal Localization in Time-frequency Space

When the transmitted signal is unknown to the receiver, matched filtering/correlation is

infeasible, and energy detection is commonly employed to determine whether a target return
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is present. The Wigner-Ville distribution is a very useful tool in this case due to its ability to
preserve the energy concentration of a signal [9],[10]. While the spectrum of the target return
may sweep across the entire receiver bandwidth during the observation interval because of
acceleration or frequency modulation, note that the instantaneous bandwidth of the target
return is usually much narrower than the total receiver bandwidth. On the other hand, white
noise has a flat power spectrum throughout the receiver bandwidth. Therefore, an energy
concentration in the time-frequency plane will reveal the presence of a useful signal. This
property is illustrated with the following two signals.

The first signal to be considered is a linearly frequency modulated signal. During the

observation interval ¢ = [0, 8), assume that a signal of the form
81(t) = exp [=j2m fm(t — 4)2], fm =1/16 (3.49)

is received by a receiver which samples the signal at a sampling rate of 1 /Ts = 1/8, producing
64 samples. For reference, the discrete Wigner-Ville distribution of 3 (¢) is given in Figure
3.10. Note that the large amplitude portion of Ws, (-) concentrates in one area forming a
ridge. The power spectral density of the corrupting additive white Gaussian noise is assumed
to be unity so that the signal-to-noise ratio is 0dB. The discrete Wigner-Ville distribution
of the corrupted signal is given in Figure 3.11. It is seen from Figure 3.11 that the ridge
caused by the signal is still discernible despite presence of noise.

The second signal to be considered is a train of linearly frequency modulated Gaussian
pulses. During the observation interval ¢ = [0,64), suppose that the receiver received a signal

of the form

(t—3—kT,)?
16

3 -
55(t) = -;—:;exp (1+ j2fm)m y  fm=1/2, T,=16. (3.50)

The sampling rate is assumed to be 1/T, = 1 resulting in 64 samples. Wj,(-) is plotted in
Figure 3.12. Note that the large amplitude portion of W;z(-) provides information of the

signal’s repetition period. The power spectral density of the noise is assumed to be 1/(\/§Tp)
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Figure 3.10: Discrete Wigner-Ville distribution of a Ifm signal
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Figure 3.11: Discrete Wigner-Ville distribution of a Ifm signal embedded in 0dB noise
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Figure 3.12: Discrete Wigner-Ville distribution of a train of four Ifm Gaussian pulses
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so that the one-pulse signal-to-noise ratio is 0dB. The discrete Wigner-Ville distribution of
the corrupted signal is given in Figure 3.13. It is seen from Figure 3.13 that the repetitive
ridges are still observable despite presence of the noise.

From the two cases considered above, it is seen that the Wigner-Ville distribution pre-
serves the energy concentration of a signal and contains its characteristics. Consequently,
Wigner-Ville distribution of the received signal provides useful information about the target
return when the knowledge of the transmitted signal is lacking. This acquired information
about the signal may enable one to choose a proper reference signal. Moreover, this in-
formation helps to eliminate unwanted noise. Therefore, a Wigner-Ville distribution based
receiver is rather useful when the transmitted signal is unknown such that matched filtering
is infeasible. To implement such a process digitally, criteria for the discrete Wigner-Ville

distribution based receiver to be alias-free were established in this work.

Estimation of the Instantaneous Frequency of the Target Return

As mentioned earlier, the nonmaneuvering slowly fluctuating point target model may
not always be suitable; there are occasions where the target is maneuvering and its acceler-
ation cannot be ignored. Acceleration in the target return has the same effect as frequency
modulating the target return. The problem of how to estimate this modulating factor as
well as estimate other parameters in an {fm signal has been drawing considerable research
efforts. One recent paper [33] proposed a simple algorithm based on the discrete ambiguity
function. It is shown that the estimated variance of this suboptimal algorithm is about 7
percent higher than the Cramer-Rao bound at high signal-to-noise ratios, and about 60 per-
cent higher than the bound at a signal-to-noise ratio of 0dB. This algorithm relies on finding
the maximum of the ambiguity function along a cut in frequency. However, the reason that

the maximum of the ambiguity function along a cut in frequency provides information about
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the modulating factor was shown only for an Ifm signal of constant amplitude by deriving
the ambiguity function of this signal. In the following, we demonstrate that this result can
be extended to a broader class of signals.

Let 33(t) be a nonnegative low-pass signal which has finite energy. For example, 33(¢) may
be a monotone Gaussian pulse or a train of rectangular pulses. The continuous ambiguity

function of 33(¢) is given by

6:,(r, f) = l i ‘: Sa(t)3(t — 1) exp(—j2m fot)dt| (3.51)
Using the Schwartz inequality, we have
) [ syt - ) exp(jon th)dt' < [ st - )l as (3.52)
Since §3(t) is real and nonnegative,
/_ ‘: 5s()33(t — )| dt = /_ °:o 53(t)5s(t — 7)dt
- i [ Z 5(1)3a(t — 'r)dt‘
= ' i °; Sa(0)sot — ) exp(—jorfot)at| (3.53)
Thus, we conclude that
05,(7, fp) < 85,(,0) (3.54)

when 33(t) is a nonnegative low-pass signal which has finite energy. Relationship (3.54)
indicates that the ambiguity function of a nonnegative low-pass signal of finite energy has
the highest peak of the ambiguity function at fp = 0 along any cut in Doppler.

Let 34(t) = 33(t) exp(j27at?). Then the time-frequency correlation function of 34(t) is
given by

oo

$a.(r, o) = [ 84(t)3i(t — ) exp(—s2n fot). (3.55)

—00

Using the relationship between 34(t) and §3(t), we have
3,(r, 0) = exp(~j2mar®) [ 5x(0)55(t ) exp[~s2n(fp — 2a7)]
= exp(—j2rar®)és, (1, fp — 2a1). (3.56)
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It follows that

6s,(7, fp) = 05,(7, fp — 2a7). (3.57)
The above relationship indicates that the ridge in 65,(-) along fp = 0 is shifted in frequency
in 05,(-).

Recall that the sampling criteria under which the continuous and discrete ambiguity
functions are equal were derived in Chapter 2. Therefore, similar relationships as (3.54)
and (3.57) can be obtained for the discrete case when those criteria are satisfied. With
the following example, we illustrate the relationship between the discrete time-frequency
correlation function of a monotone signal &3(¢) and that of its linear frequency modulated

version 34(t). Let 33(t) be given by

(3.58)

Sl

0=}
Assume that 33(t) and 34(t) are sampled fromt = 0 to ¢t = 8 with a sampling rate of 1/T, = 2.
Figure 3.14 depicts 6;,(-). Assume o = 0.025. Figure 3.15 depicts 0;,(-). The shift of the
peak can be seen by comparing Figures 3.14 and 3.15.

From the foregoing discussion it is seen that the maximum of the ambiguity function of a
linearly frequency modulated nonnegative signal provides information about the frequency
modulation factor. Thus, the algorithm proposed in [33] can be applied not only to an Ifm
signal of constant amplitude but can also be applied to any linearly frequency modulated
nonnegative signals.

In this subsection we discussed application of the ambiguity function to estimation of a
signal’s instantaneous frequency. It was shown that the estimation procedure proposed in
[33] can be extended to a broad class of signals. With this estimation, the reference time-
frequency correlation function of a time-frequency correlation function based receiver can
be properly chosen for optimum detection and estimation of the delay and Doppler in the
target return. However, due to the fact that the estimation procedure in [33] is simple but

suboptimal, the result may be unsatisfactory such that iterations using different reference
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time-frequency correlation functions are needed. Nonetheless, the maximum of the ambiguity
function of the received signal may still prove to be a good indicator of the instantaneous

frequency of the signal so that an exhaustive search is not needed.

3.4 Discussion

In this chapter we derived criteria for realizing the optimum discrete radar receiver based
on both the discrete Wigner-Ville distribution and the discrete time-frequency correlation
function. It was shown that correlating the discrete Wigner-Ville distributions of the received
samples with the reference can be used to generate the test statistic for optimum detection
and estimation in a Gaussian noise environment provided the aforementioned criteria are
satisfied. Matched filtering the discrete time-frequency correlation functions of the received
samples and the reference can also be used to generate the test statistic. Schemes to lower
the requirement on the sampling rate and to reduce the requirement on the duration of the
sampling process were also derived. Application of alternative forms of the radar receiver was
llustrated with two examples. It was shown that a Wigner-Ville distribution based receiver
is more versatile than the conventional one in dealing with problems where the transmitted
signal is unknown. It was also shown that a time-frequency correlation function based
receiver is useful in dealing with a maneuvering target or a linearly frequency modulated

nonnegative signal.
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Chapter 4

Quantization Effects in
Time-Frequency Distribution Based
Radar Receivers

As derived in Chapter 2, the optimum discrete receiver computes the statistic

m
A(" ”Tvﬁ)‘

It was shown that there are various equivalent structures to implement the receiver. Con-

2

(4.1)

N-1
Y #(kT,)8" (KT, — nT,) exp (— j27rm—k-)
k=0 N

ventionally, the receiver is either a direct form realization of (4.1), or it can be a frequency-
domain equivalent as shown in (2.37) of Chapter 2. In the previous discussion it was also
shown that (4.1) can be realized by correlating the discrete Wigner-Ville distribution of the
received signal and that of the reference, as given in (3.19), (3.22), (3.31), and (3.35) of Chap-
ter 3. Another approach to realize (4.1) is by matched filtering the discrete time-frequency
correlation function of the received signal and that of the reference as shown in (3.42) and
(3.46) of Chapter 3. Advantages of each form were discussed in Chapter 3.

In practice, discrete receivers are implemented with digital devices of finite register length.
Consequently, signal samples need to be quantized and computations are based on finite
precision arithmetic. Effects of signal quantization and finite precision arithmetic can be

viewed as additional noise introduced in the system. It is important to examine the effects
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of this noise on the performance of the receivers developed thus far. This chapter is devoted
to the study of quantization effects in these receivers, i.e., effects of rounding of the signal
samples and performing finite precision arithmetic in these receivers. The analysis is based
on a statistical approach with the measure of error being the ratio of the second moment of
the quantization error in the receiver oﬁtput to the second moment of the receiver output
without quantization error. The use of statistical methods in problems where processes are
unknown or too complex for a deterministic representation is a well established method [34].
In the literature the aforementioned ratio is simply called the noise-to-signal ratio, which
will also be used in the following analysis. Analytical results on the output noise-to-signal
ratio are first obtained and then verified by computer simulations.

In most radar applications, both the computational speed and hardware complexity are
of great concern. Fast Fourier transform algorithm and fixed-point arithmetic are usually
employed to fulfill these requirements. Therefore, we will assume that fast Fourier trans-
form algorithm with fixed-point arithmetic is used in realizing the receiver whenever it is
required to perform discrete Fourier transform. In the first section of this chapter we will
review the results given in the literature on the quantization effects in fast Fourier trans-
form computation. Specifically, we will consider a radix-2 decimation-in-time fast Fourier
transform algorithm which uses fixed-point rounding arithmetic. Attention will be paid to
the effects of coefficient quantization. In the previous work, the distinction between the two
cases when the coefficients are generated as a part of the fast Fourier transform computation,
i.e., in-place computation, or are obtained from a look-up table was recognized [34] but not
analyzed accordingly. The quantization effects of both methods of generating the coefficients
will be examined. The treatment given in Section 4.1 will follow closely the one given in
[34]. Then, in Section 4.2 we consider the quantization effects in the receivers of the forms

(4.1), (3.22) and (3.42). Similar procedures can be applied to the analysis of other receivers.
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4.1 Quantization Effects in Fast Fourier Transform
Computation

In this section, we consider quantization effects resulting from finite precision arithmetic.
Specifically, we determine the mean-square value of quantization errors that are produced
when summation and multiplication are carried out. Also, we examine the manner in which
these errors propagate in successive summations and/or multiplications. Then, we analyze
quantization effects while computing fast Fourier transform with a radix-2 decimation-in-

time algorithm.

4.1.1 Effects of Finite-Precision Arithmetic

In this work, the number system is assumed to be a (b+1)-bit sign-magnitude fixed-point
binary number system, with 1 sign bit and b fractional bits to represent the fraction part.
With this number system, it is necessary that the input be appropriately scaled before it can
be represented. This is usually achieved by using the full-scale amplitude of the analog-to-
digital converter as the normalizing factor. There are occasions when an input falls outside
of the range of the converter even when attenuation of the input is used. This results in
truncation. For example, digitization of a sequence of Gaussian distributed random numbers
may require truncations of some of the numbers. However, the number of times truncation
is needed is negligible when the variance of the random numbers is much smaller than the
range of the A/D converter. In the following analysis, we will assume that the variance of
the noise in the received signal is much smaller than the full-scale amplitude of the A/D
converter so that the error due to truncation at the input of the converter is negligible.

Since the smallest increment that can be represented in the number system under con-

sideration here is 27° , the input must be quantized when more than (b4 1) bits are needed
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for an exact representation. Assume that this is accomplished by rounding the number to
the nearest representable number, and rounding up when the number is at the midpoint
between two quantization levels. Then, the output of the quantizer for an input sequence of

real numbers {s(k)},k=1,---, N can be written in the form
Qs(k)} = s(k) + e(k) («2)
where Q{-} denotes the quantization operation, and e(k) denotes the quantization error,
- —<e(k) < —. (4.3)
It is commonly assumed [34] that
1. The error sequence {e(k)} is a sample sequence of a stationary random process.
2. The error sequence is uncorrelated with the input signal sequence {s(k)}.

3. The elements of the error sequence are uncorrelated, i.e., the error is a white-noise

process.

4. The elements of the error sequence are uniformly distributed over the range of quan-

tization erfor, i.e., they are uniformly distributed over —275-1 to 2-%-1,

The validity of these assumptions has been examined extensively in the literature, for exam-
ple in [35]-[37] and the references listed therein. It was shown that for most waveforms of
practical interest and large register lengths the above assumptions give a reasonable model
of the quantization error. Considering the availability of 12 and 16 bit analog-to-digital
converters of reasonable sampling rates for radar application, the above assumptions are
suitable for analyses for radar systems [38]. With these assumptions the first and second

moments of the quantization noise are
E{e(k)} =0, (4.4)
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and

2—26

Blewen) ={ o7 £2]

k# L.

The foregoing discussion characterizes the errors in representing analog inputs using the

(4.5)

prescribed numerical system. Next, we consider the effects of quantization on the results of
two basic types of arithmetic operations, i.e., addition and multiplication.

Since it was assumed that there are b bits to represent the magnitude of a number,
the magnitude of the result of an addition can not exceed 1 — 2%, Otherwise, an error is
introduced. However, with proper scaling of the numbers to be added, this type of error
can be avoided. For example, the two numbers can be divided by two before addition. On
the other hand, multiplication does introduce roundoff errors. Since we are interested in
operations involving complex numbers in later analysis, we consider the quantization error
while forming the product of two complex numbers 3, and §,. Denote the real and imaginary
parts of the two numbers by s;, and s;;,2 = 1,2, respectively. In the multiplication of two
complex numbers four real multiplications are involved. Therefore, there are four roundoff
errors corresponding to rounding of each of the four real products. The rounded product of

3189 can be written as

Q {si1rs2r} — Q {s1rsar} + JQ {s1rsar} +JQ {s1182r}
= (s1RS2R + e1) — (Sirsar + e2) + j(s1rsar + e3) + j(s1182r + eq)

= 513, + €1 —ex+ jea+ jes (4.6)

where e;,i = 1,--+,4, denote errors due to the roundoff of the four real products. Assume

that e;,4 = 1,---,4, have the following properties:

1. The errors €;,i = 1,---,4, are uniformly distributed random variables over the range

—9-b=1 to 9-5=1_ Therefore, each error e; has mean zero and variance 2-%/12.

2. The errors are mutually uncorrelated.
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3. All the errors are uncorrelated with the input and consequently the output.

Denote the error resulting from rounding the complex product $,3, by ép, which is a complex
number. Since it was assumed that e;s are uncorrelated and have zero means, it is easy to
see that the mean square magnitude of ep is

E{Iép|2} =4. g_— =

2b 2—2b
= (4.7)

The above result indicates that an error of variance of 272/3 is introduced after every fixed-
point multiplication of two complex numbers. In some problems of interest this large error
variance can be avoided by carrying out the computation in a different manner. For example,
consider the calculation of the product of ‘a complex number and its complex conjugate to
obtain the squared magnitude. The squared magnitude of a complex number can also be
obtained by summing the squares of its real and imaginary parts. Calculation in this manner
reduces the error variance to one-half of the value given in (4.7). This can be seen by letting
2 = 5] and dropping the imaginary parts in (4.6). In what follows we examine the manner
in which the quantization errors accumulate in summation and multiplication.

Recall that it was assumed that the quantization errors are mutually uncorrelated, and
they are uncorrelated with the inputs. It follows that the error component in the result of
an addition has a variance that equals the sum of the variances of the error components
of the two numbers being added. This is not the case in multiplication. Denote the two
rounded complex numbers to be multiplied by 8ig>t = 1,2, and the accumulated errors
in the real and imaginary parts of these two inputs, which were introduced prior to the
multiplication, by e;, and e;,,7 = 1,2, respectively. That is, if $; and 3, denote the exact

results of infinite-precision operations, we have
giQ =5 + (e,-R +]'8,‘I) , 1 =1,2. (48)
The product of the rounded numbers can be written as

819829 = (S15 + €15) (S25 + €25) + J (515 + €1R) (52, + €3;)
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+7 (311 + 611) (S2R + 6211) - (311 + 611) (321 + 621)
= 81,825 — S1;52; T JS182; + 781,82, + €15525 + €2551
—eq,82; — €2;51, + Je1p82; + Je2; 81, + J€1,525 + J€2551,

+e1pe25 — €1,€2; T J€15€2; + Je1,€2p. (4.9)

Then, the mean-square magnitude of the error is given by

2

oy = E|leigs2, + 621131;2 — €182 — 62131; + €1p€2p — e1,€2,]
+ j [ernSar + €2,515 + €1,525 + €251, + €162, + €162l
=E {[6’1}2823 + €251, — €182, — €2,;51; T+ €15€25 — e1 €2,
+ [e1x82; + €2,815 + €1,825, + €251, + €1z€2; + 61,ezn]é} . (4.10)
As before, assume that the errors are uncorrelated with each other, they are uncorrelated

with the input or output, and they all have zero means. It follows that

0']2\/1 =E {[61332}2]2 + [62)25111]2 + [611321]2 + [621311]2 + [6111321]2 + [62151R]2

+ [e1,525)" + [e2ps1, ) + [erpens]” + [er,e2,]” + [e1pea,]” + [611€2R]2} . (411)

Assume that e, and e;, have equal variances denoted by o2 /2,. Similarly, let 02 /2 denote
the variance of ey, and ey,. In many applications, the complex numbers §;,1 = 1,2, are
modeled as random variables with their real and imaginary parts assumed to be mutually
uncorrelated and all with zero means. Assume that s;, and sy, have equal variances that
are denoted by af; /2. Similarly, let 62 /2 denote the variances of s3, and s3;. In this case,

Equation (4.11) reduces to

— 2 2 2 2 2 2
Oy = 05,0, + 05,0, + 0,0,

~ o202 +ol0l (4.12)

where it is assumed that % > o2. By letting 35, = &% in (4.9), we can analyze the
Sq €y g Q 1g

manner in which error accumulates in the calculation of the squared magnitude of a complex
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number. When 33, = 3] is substituted in (4.9), it is seen that the imaginary part does not
contribute towards error. The derivation of the error variance is similar to the derivations
(4.10) to (4.12). Thé result shows that the output error has a variance equal to o2 o2 .

There are occasions in which one of the two numbers being multiplied is modeled as
deterministic and the other one is modeled as random. This situation usually arises in the
analyses of quantization effects in a digital system. In this case, the coefficients are modeled
as deterministic, but the errors resulting from coefficient quantization are substituted with

random variables. Let us consider multiplication of §; and §; where §; is deterministic and

3, is random. From (4.11) we have,

2 _ |1~ 122 2 2 2 2
oM = |81| ae; +032081 +0'610'82

> |5%02 + 020’ (4.13)

s27¢€

where again we have assumed that 032 and |§,|? are much greater than ol.

Finally, we consider the problem of dividing a number by 2. In this case error occurs
when the least signiﬁcaﬁt bit of the number is discarded. When the number is positive
and its least significant bit ; is one, the error introduced is —27%/2. When the number is
negative and b is one, the error introduced is 27%/2. No error is introduced when the least
significant bit of the number is zero. Assume that 4 is equally likely to be zero or one. The

mean-square error o in this case is given by
- R
0%, = Prob(the number is positive, b is one) (-—5—

27%)?
+Prob(the number is negative, b; is one) (————)

2
1 2-b)?
= Prob(the number is positive) - 3" (—-—2—)
1 [27%)\?
+Prob(the number is negative) - 5" (T)
—2b
- (4.14)
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This result can readily be applied to the scaling of a rounded complex number by 1/2, which
involves scaling both the real and imaginary parts of the number by 1/2. Assuming the
errors from scaling the real and imaginary parts to be uncorrelated, the resulting error in

the scaled complex number has a variance of 27%/4.

4.1.2 Quantization Effects in Fast Fourier Transformm Computa-
tion

In this subsection, we apply the results developed in the last subsection to determine the
effects of quantization on fast Fourier transform computation. This topic has been treated
thoroughly in the literature, for example in {34]. However, the distinction between whether
the coefficients are generated from in-place computation or are obtained from a look-up table
was only acknowledged [34] but not analyzed in detail. This issue will be clarified in the
following.

Consider a sequence of N input signal samples, where N is an integer power of 2. All
standard radix-2 decimation-in-time fast Fourier transform algorithms have the following
common features. The Fourier transform is computed in v = log, N stages. At each stage a
new array of N numbers is obtained from the previous array by linearly combining its ele-
ments taken two at a time. The resulting array at the vth stage contains the desired discrete
Fourier transform. Figure 4.1 depicts the flow graph of an 8-point radix-2 decimation-in-time
fast Fourier transform algorithm. Denote the complex numbers resulting from the mth stage
of computation as S’m(k), where k = 0,---,N —1 and m = 1,---,v. Further, let S'o(k) be
the input, i.e., So(k) = 3(kT,). Thus, Spm_1(k) can be viewed as the input array and (k)
as the output array for the mth stage of computation. The basic numerical computation

performed repeatedly, which is often called a butterfly, can be written as
8(p) = Sm-1(p) + W Sm-a(0)

A A T (4.15)
Sm(q) = Sm-1(p) — ySm-1(q)
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So(0)0 > §7(0)
So(4)0 $7 (1)
3 (2) o §7(2)
86(6) o $7(3)
So(1) o 8, (4)
$5(5) o $:(5)
So(3) o 8, (6)
So(M o $,(7)

-1

(a) An 8-point radix-2 decimation-in-time fast Fourier transform

Sm-1) (P) O— S (p)
(m-1)th stage : mth stage
A Qy A
Sm-1) (9) o > Sm ()
-1

(b) A butterfly computation

Figure 4.1: Flow graph of a radix-2 decimation-in-time fast Fourier transform algorithm

128




where r is an integer and Q} = exp(—j27r/N) is the exponential coefficient. The butterfly
computation is also illustrated in Figure 4.1. At each stage, N/2 separate butterfly com-
putations are carried out to produce the next array. In the following, we assume that the
signal samples to be processed are white, in the sense that all 2N real components associ-
ated with the N complex samples are mutually uncorrelated random variables. Furthermore,
they are assumed to have zero means and equal variances. It should be pointed out that
the assumptions about the input are made to facilitate the analysis, but as will be shown in
later computer simulations that the results obtained hold for a broad class of signals [34].
Since we require that the result of any addition can not exceed 1 —27°, we insert a scaling
factor of 1/2 at the input of each stage to prevent overflow in the butterfly calculation of

(4.15). Thus, the butterfly computation in (4.15) is modified as

Sm(P) = Sm-1(p)/2 + Uy Sm-1(q)/2
) ) _ ) (4.16)
Sm(q) = Sm-1(P)/2 — Wy 5Sm-1(9)/2
From (4.16), it is seen that
30 (®)] < 5 {8na@)] + [Sma(a)]} - (@17)

By letting m = 1 the above relationship gives the requirement on the magnitude of the input
samples to prevent overflow. For simplicity, we require that both the real and imaginary parts
of the initial input be restricted to the interval —1/4/2 and 1/+/2. Clearly, this is a sufficient
but not necessary condition to ensure IS'O(k)I, and consequently Igm(k)|, m=1,---,v, to be
less than or equal to one. Assume that the real and imaginary parts of the initial inputs
are uniformly distributed over [-1/v/2,1/4/2]. Then the mean-square magnitude of the
input is 1/3. As mentioned before, the assumptions about the input are made to facilitate
the analysis, but they are not restrictive and the results obtained hold for a broad class of
signals.

With the assumptions about the input samples, the mean-square magnitude of the sam-
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ples at the mth stage can be obtained with the following observation:
R 2

E “Sm(p)| ] - E[

{E

Sne1() | Sm1(q) or ||
2 t 2 Oy

[ m- 1(17)|]+|Q ’E [lgm—l(p)lz]}
E [[S,- ] (4.18)

e {60 - e

The average squared magnitude of the output can be obtained from (4.19) by setting m = v

l\Dlr-w{kll—-

It follows that

o(p)lz} =3 .12,,, (4.19)

so that
1 1

B[S0 = 375 = 33

(4.20)

Next, we determine the variance of the quantization error in the fast Fourier transform
calculation. Note that if the coefficients (}; can be expressed exactly, the only two sources
of roundoff errors in the butterfly computations are the scaling of the numbers by 1/2 and
the quantization of the products of S’m(q) and Q%. In the following, we will first assume
that the coeflicients can be represented exactly, and then consider the case when they are
quantized.

As derived earlier, the scaling of a rounded complex number by 1/2 introduces an error
whose variance is 272 /4. It was also shown that the error due to quantization of the
product of two complex numbers has a variance of 272°/3. Recall that the errors from
performing finite precision arithmetic were assumed to be uncorrelated with the input. Thus, .
the calculation of S’m(p)/z results in an error of variance 27%/4 and the calculation of

r5m(g)/2 results in an error .of variance 272(1/4 +1/3) = 7-27%/12. It follows that
there is an error of variance 272(1/4 + 7/12) = 5 - 27%/6 introduced after each butterfly
calculation. To find out the error in the output of a fast Fourier transform calculation, we
need to consider how many butterfly calculations are involved in producing the final result. It

is noted that for the general case with N = 2, each output node of the transform connects to
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e

-

v

2(v=m=1) butterflies that originate at the mth sté,ge. An inspection of Figure 4.1 verifies this
observation. Then, at the kth output node, k¥ = 0,...,(N — 1), the mean-square magnitude
of the noise is

!

. 5.972% r1 2(v-m=—1)
Bl = 3 22— (3)
m=0

B 5_2—26 v—1 <1)—m
- 3N 2

m=0

_5 g‘” (1-%)- | (4.21)

For large N, we have
5.27%
3

This result is the same as given in [39]. In the remainder of this work we will assume the

Efle(k)["] = (4.22)

case of large N. Thus, from (4.20) and (4.22), the output noise-to-signal ratio for the case

of white input and when scaling is carried out at each step is given by

‘E[|<Ae(k)|2] _EN .9, ' 4.23
E [|5.(k)?] o

From the above result it is seen that the output vnoise—to—signal ratio degrades as NNV increases.
Also, the relationship between output noise-to-signal ratio with input sample power can be
deduced as follows. Since discrete Fourier transform is a linear operation, scaling of the input
samples results in a scaling of the output by the same amount. It follows that reducing
the input sample power reduces the output power. On the other hand, since the output
quantization noise does not depend on the input signal level, changing the input sample
power does not affect the output quantization noise power. Therefore, lowering of the input
level degrades the output noise-to-signal ratio. In other words, it is imperative that we
maintain the level of the input signal samples as high as possible to ensure that the output
noise-to-signal ratio is acceptable.

Next, we consider the situation when the coefficients used in the fast Fourier transform

computation are quantized. One of the approaches that has been found to be useful in the
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literature in determining the effects of coefficient quantization is to introduce random jitter
[39] in the coeflicients and determine the output noise-to-signal ratio due to this noise. Denote

the exact coefficients by Qf, and the quantized ones by Q’"N, r=0,---,v— 1, respectively.

That is,

Wy =Q{%} =% +¢ (4.24)

where €, is a complex number whose real and imaginary parts are the quantization errors
of the real and imaginary parts of QY respectively. Using the random jitter method, we do
not express €, exactly to analyze the effect of coeflicient quantization. Instead, we substitute
them with complex random variables whose real and imaginary parts are uncorrelated. Al-
though this method does not predict with great accuracy the error variance in a fast Fourier
transform algorithm due to coefficient quantization, if is helpful in providing a rough estimate
of the error variance [39]. It should be pointed out that the effect of coefficient quantization
also depends on how the coefficients are obtained. All the required values can be stored in a
table, or they can be computed as needed. The first alternative has the advantage of speed
but requires extra storage. On the other hand, calculation of the coefficients as needed saves
storage but is less time efficient than a look-up table. Furthermore, if the coefficients are
obtained through calculation, the errors accumulate. In the previous work the distinction
between whether the coefficients are obtained from in-place computation or from storage was
recognized [34] but not analyzed in detail. In the analysis given in [39] the variances of the
coefficient quantization errors were treated as constants. Therefore, the results can only be
used to predict the coefficient quantization effect for the case when coefficients are obtained
from a look-up table. In the following analysis we distinguish between these two cases and

treat them separately.

Coefficients from a look-up table
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When the coefficients are obtained from a look-up table, the effect of finite-precision
representation can be analyzed in the following manner [39]. Using the random jitter method,
we assume that in the required coefficient there is a jittering noise whose real and imaginary
parts are uncorrelated and are uniformly distributed over —27%71 to 27%~! such that its
magnitude has a variance of 2-% /6. The output of a butterfly computation at the (m +1)th

stage with jittered coefficient can be written as

. S . S
_ Snl®) | o Sm(q)
- A 2 + (QNA+ er) 2 A ‘
_ Sulp) | o Sm(q) m(q)
= R AT 6 T (4.25)

Assuming that ¢, is independent of S’m(k), k=0,...,N —1, the mean-square magnitude
of the error contained in the output of a butterfly at the (m + 1)th stage due to coefficient

quantization is given by

7 = 7B [I8 (q)l]E[le}
12—2b
= F ]
12“2” 1
4 6 3.2m (4.26)

where (4.19) has been used. In a manner similar to the one used in deriving (4.21), the
mean-square magnitude of the noise at the kth output node can be obtained by

R (v=m—1) | 1 2(v—m—1)
o) = S a2 - (3)

2— 2b v—1 1
Z ,,EO 20--1)

v-27%
36N

(4.27)

It follows that the output noise-to-signal ratio is
oXk) w27
E[18. (k)P
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Although we would not expect (4.28) to predict the error performance with great accuracy,
it still provides us a good estimate. The key result of (4.28) is that the noise-to-signal ratio

increases very mildly with N, being proportional to v = log, N.

Coefficients from in-place calculation

The analysis of the effect of coeflicient quantization is more involved when the coefficients
are obtained from in-place computation. When the coefficients are to be computed at each
butterfly, it is generally most efficient to use a recursion formula, such that the required
coefficients are all powers of a complex number of the form Qy,m = 1,---,v, where r,
depends on the algorithm and the stage. In the following, we consider the algorithm given in
[34], which closely follows the form originally given by Cooley et al. In this algorithm, there
are 2™ coefficients generated at the mth stage. At each stage, there are N/2 butterflies. If
2™ < N/2, the coeflicients are used (N/2)/2™ times at that stage. The lth coefficient at the
mth stage is given by 1 |

-1

Q1 = T] Q. (4.29)

=1

The first iteration of (4.29) yields unity. In fact, the coefficients used in the butterflies of
the first two stages are 1,—1, 7, and —j. Since the multiplication of unity can be performed
without error, the butterflies whose coefficients are unity do not contribute towards output
noise. The second and later iterations of (4.29) involve the multiplication of the quantity

™ and result in quantization error. In the second iteration of (4.29), we have
Q[ Y| _] = Q%] = o +en (4.30)

where ¢,,, denotes the corresponding quantization error. As before, we substitute ¢,,, with a
jitter noise whose real and imaginary parts are uniformly distributed over the range —2~4-1

to 271, Thus, the mean-square magnitude of the error in the second iteration of (4.29) is
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272 /6. The rest of the iteration of (4.29) can be described by
Arm(l— A\Tm ATm  OTm
Ot = Q- Q[0 [Q (O - )] ], (4.31)
where [ > 3. The coefficient in the third iteration of (4.29) at the mth stage, m > 3, is
obtained by multiplying QR’," to itself and then quantizing the result. That is,
A Tm(l'—l) — ATm ()Tm
QN |l=3 - Q [QN QN
= Qi + ep(1)
= Q%™ 4+ 200, + €. +ep(1) (4.32)
where ep(1) is the quantization error in representing the complex product QTA}" Qx" Again,
assume that ep(1) is zero mean, is uncorrelated with the input, is uncorrelated with e,,, and

has a variance 2-2/3. Denote the resulting error by e.(3) and its mean-square magnitude

by o3. 1t follows that
e.(3) = 20%e,, + €& +ep(l) (4.33)
and
o2 =E [IQ e+ + ep(l)‘z]

= 4E[|er,,[’] + Eller(1)]"] + Ell€7,, Y

= (4.34)
where the assumption that e, @nd ep(1) are uncorrelated was used. Also, the fourth moment
of ¢,,, was assumed to be negligible.

It is straightforward to generalize the above result. The error due to coefficient quanti-

zation in the Ith iteration, [ > 4, can be expressed as
eo(l) = e.(1— 1) (U + €,,) + O Ve 4+ ep(1 - 2), (4.35)

where ep(l) is the error due to quantization of the product Qe QU )Y, and it is assumed

to have a variance 272°/3. When [ > 5, we have

eo(l) = [ecl = 2) (7 + &) + Ve, + (1= 3)] (U7 + €r,)
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+OU e, 4 ep(l—-2)
= e(I - 2)0% + 20 Ve, +ep(l—3)U + ep(l —2)

+{higher order terms of noise}.

From the recursive relationships, we conclude that for I > 4,

ec(l) (3)Qrm(l 3)+(l 3)QTm(l 1) e +Ze rm(l i-2)

1=2
+{higher order terms of noise}.

Substituting for e.(3) given by (4.33), we have

ee(l) = (20 € + €, +ep(1)) Q7 + (1 - 3)2 Ve,

1-2 .
+>° ep(i)QR',"(l_l—z) + {higher order terms of noise}

=2

(l"' ) ’rm(l 1)6

7'm

Thus, the mean-squared magnitude of the resulting error is given by

E [le()?]

=E [|(l - 1)9“"([ Y m T E ep(i T'"(I -2 4 {higher order terms of noise}

22b -2 5—2b

= (1-1)? e +> =5 + E |{higher order terms of noise}|’
=1

-~ 2—2b
= (P-3) "

|

(4.36)

(4.37)

Z ep()A ™2 4 {higher order terms of noise} (4.38)

(4.39)

where it is assumed that the third and higher order moments of the noise can be ignored.

Using (4.39) we can determine the mean square magnitude of noise due to coefficient quan-

tization for any butterfly at the (m + 1)th stage. Following the same approach as used in

deriving (4.26), we have

2 1 2
2 () = 7B [[Sn (@[ B [lec0]
_1(2-3)27% 1

~ 4 6 3.2m
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Next, we examine the mean square magnitude of noise in the output.

From (4.40) it is seen that different butterflies have different mean square magnitudes of
noise due to their dependence on [ and m. Since each output of the fast Fourier transform
connects to different sets of butterflies, each output contains different mean square magni-
tudes of noise that is due to coefficient quantization. It is difficult to determine the mean
square noise according to which butterflies have been used to generate a specific output.
In the following analysis for the noise in the output, we use (4.40) to compute an average.
Denoting the average of the mean square noise at the (m + 1)th stage by 62 410 We write

1 Z(N/2\[1(2-3)2"% 1
_2 —— — —
Temtr — N/2 Z ( om ) [4 6 3.9m

=2

2—% 1 1 3m 2m m m
__72_'2_%7[8(2'2 +3-27" 4 2™) —1-3(2 —1)]
2——2b 1\N™ 1\™
=2 _ 2.2 4+3-17-(= 12-(=) |. 4
m - (g) v (3) ] (441

Thus, &me is used as the mean square error of coefficient quantization that occurs at any
butterfly in the (m 4 1)th stage. In a manner similar to the derivation of (4.21), the output

mean square noise due to coefficient quantization is approximately

v—1 13 2(v-m-1)
= 22 A (3)
56w @) e ()]
_E 5 224327 - 17412 (l)m] . (4.42)
216N =, 2
Using the identity - .
mz=:2 "= — (4.43)
and assuming N is much greater than unity, we have
ot gﬁN. (4.44)
© 324

Since the output has variance 1/(3N), the noise-to-signal ratio in the case where coefficients

are obtained from in-place calculation with finite-precision is roughly




2 ~2b
P 2

E|S, (k)] 108

N2, (4.45)

Comparing the results given in (4.28) and (4.45), it is obvious that the effect of coefficient
quantization depends on how they are generated. The alternative of in-place calculation has
the advantage of hardware simplicity, but it introduces a much greater amount of quantiza-
tion error. In particular, (4.45) indicates that the noise-to-signal ratio is roughly proportional
to N2, It has been pointed out [34] that to reduce the problem of accumulation of errors
when the coeflicients are obtained from in-place computation, it is generally necessary to
reset the values at prescribed points. However, to reset the coefficients, the values have to
be stored. It becomes a tradeoff between noise-to-signal ratio performance and hardware
complexity. Nevertheless, storing the coefficients in a table is preferable when high accuracy
is important. In the following, we assume that the coefficients are stored in hardware, and

therefore, the effects of coefficient quantization are negligible.

4.2 Quantization Effects in Radar Receivers

This section is devoted to the analysis of quantization effects in radar receivers. The
receivers considered are the conventional matched filter based receiver as given by (4.1), the
discrete Wigner-Ville distribution based receiver as given by (3.22) of Chapter 3, and the
discrete time-frequency correlation function based receiver as given by (3.42) of Chapter 3.
Specifically, we will evaluate the effect of quantization error on the test statistic along a cut
in Doppler using the aforementioned receivers. All of these receivers are implemented in the
time-domain; however, the analysis can be extended to their equivalents in the frequency-
domain and other types of receivers derived in previous chapters with minor modifications.
Furthermore, since the operation of the conventional receiver can be viewed as calculation of
the cross-ambiguity function of the received and the reference signals, the result obtained in

this section can be applied to the analysis of the effect of quantization error on the discrete .
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ambiguity function. In the following discussion, the effects of quantization error on the
discrete Wigner-Ville distribution and the time-frequency correlation function can also be
observed. -

In the analysis, we assume that the sampling rate is 1/T, = 4B, the number of samples
obtained is N = T/T,, where N = 2" and v is an integer. Also, we assume that the
number system is a (b + 1)-bit sign-magnitude fixed-point binary number system, with 1
bit representing the sign and b bits representing the magnitude of the number. The fast
Fourier transform is assumed to be of radix-2 decimation-in-time form and a scale factor of
1/2 is inserted before each butterfly computation to prevent overflow. The input sequences
{#(kT,)} and {3(kT,)} are assumed to be uncorrelated and each is assumed to be white such
that the real and imaginary parts of the two sequences (4N real samples) are uncorrelated.
Furthermore, each real sample is assumed to be uniformly distributed oner -1/v/2to 1/ V2.
It follows that each complex sample of the input sequences has power equal to 1/3. Again, the
assumptions about the input are made to facilitate the analysis, but they are not restrictive

and the results obtained hold for a broad class of signals.

4.2.1 Conventional Matched Filter Based Receiver

In this subsection, we evaluate the effect of quantization error on the test statistic along a
cut in Doppler as calculated by a conventional matched filter receiver. There are two sources
of quantization error in a discrete receiver. One source is the analog-to-digital conversion
of the signals. The other quantization error soufce is finite precision arithmetic. Note
that operations such as shifts and rotations of the reference signal sample sequence do not
result in quantization errors. The arithmetic performed in the conventional receiver can be

implemented with the following three-step algorithm.

Step 1. Cross multiply the received and reference samples to obtain {#(kT,)3*(kTs—nTs)},
k=12,...,N.
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Step 2. Compute the N-point fast Fourier transform of {7(kT,)5*(kT, — nTy)}, resulting
in qAS;g[nTs,m/(NTs)], m=1,2,...,N.

Step 3. Take magnitude-square of the result of Step 2, yielding AnTs,m/(NT,)], m =
1,2,...,N.

A block diagram describing the computations in this algorithm is shown in Figure 4.2.

To obtain an analytical expression for the output noise-to-signal ratio of the receiver in
terms of wordlength b and sample sequence length N, the signal and noise powers will be
derived at different points of the block diagram. As depicted in Figure 4.2, p? denotes the
signal power and ¢? denotes the noise power, i = 1,2, 3. Furthermore, e; and e; denote the
initial quantization errors due to analog to digital conversion of the received samples and

the reference samples, respectively. As before, the following assumptions will be adopted.

1. e; and e; are uncorrelated with each other and the inputs, and their real and imaginary

parts are uniformly distributed over —27%/2 to 27%/2.

2. The roundoff noise due to each real multiplication is uniformly distributed over —2- /2

to 27°/2 with variance 272°/12.
3. All noises due to each real multiplication are mutually uncorrelated.

4. All noises are uncorrelated with the input, and consequently, they are also uncorrelated

with the result of the computation.

With the previous assumptions about the probability distributions of the signal samples,

the signal power after Step 1 is given by
1
ui = E [|F(R1)5" (KT, — nT,)[] = B [[FAT)P| E [ (KTs - nT)[Y] = 5 -5 = <. (4.46)

The signal power after Step 2 can be seen from (4.20), which indicates that the output power

of the N-point fast Fourier transform algorithm considered here is 1/N times the input power.
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Figure 4.2: Computational flow graph of the conventional discrete matched filter based
receiver
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Hence, p2 = 1/(9N). To obtain the signal power after Step 3, we need to calculate the
second moment of 8;;[nT,,m/(NT,)]. One method to carry out this calculation is to make
further assumptions about the joint probability distribution of samples of 8z;[n T}, m/ (NTy))-
However, it is difficult to find a distribution that suitabiy describes ér's(‘) for arbitrary signals.

Another approach to calculate the output signal power is to directly utilize the properties
of the discrete ambiguity function. Since it was assumed that 1/T; = 4B and N = T/T,,
there are 2N points in delay direction and N points in the Doppler direction in one repetition
of the discrete ambiguity function. Averaging the magnitude square of the discrete ambiguity

function over one repetition, we have

! mk
oV ZEZ (KT,)3 (ka-nT,)exp( JQWTV_)

= 2N2 [}:Z kT,)§* (KT, — nT,)i#*(IT,)5(IT, — nT,) exp (j2x-"l(’-1—\','—’fl)r

= QNZZEZZZZ F(KT,)# (IT,)#(pT, )i (¢T,)3" (KT, — nT,)3(IT, — nT,)

§*(pTs — nT,)3(¢Ts — nT,) exp [j27rm(l — k; 1 p)] . (4.47)

Note that the above summations are performed over one repetition of the discrete ambiguity

function. Summing the exponential term over m by the Poisson’s sum formula, we have

2N2 ZZ Z )5*(KT, — nT,) exp (_szgzjvk)

19D > ; S F(KT, ) (IT,) 7 (pT,)7* [(k + p — )T,)5*(kT, — nT,)
S(IT, = nT)3" (pT, — nT)3|(k + p— I — n)T.. (4.48)

Letting m’ = p — [ in (4.48), we have

o m'k
2N2 o7 2 2 Zr(kT *(kTs — nTs) exp (_JQﬂ._]_\;_)

n m!

= 57\7 ) Xk: ; }: (kT )i (1T, )F[(1 + m/)L)7 [(k + m')T,]5" (kT — nTs)
-g(z:r — nT)&*[(1 + m' — n)TJ3[(k + m' — n)T]

ZZ

n m!

4

2

Z F(kT, )7 [(k + m")T)8* (KT, — nT,)3[(k + m' — n)T,)

H

(4.49)
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Applying the Cauchy-Schwarz inequality

mk
2N222 *(kT, —nT)exp( ]27r7v:-)
—N-ZZ *[(k + m!)T,)5*(kT, — nT,)3[(k + m' — n)T,)

—_

< WET [Ek: FOTSIG + '~ L] [ -+ m)LIAT, - oL
=2 Z [ij |F(kT,)5[(k + m' — n)Ty) |2] [le [F(IT.)3[(l — m' — n):r,,]|2] . (4.50)

[u—y

2N 57~
Let
p(n) = S RT3k ~ )T (4.51)
Then,
LZZ Zr(kT )8*(kTs — nT,) exp (—-]2%——)
< %V-ZZ; [Elr(kT )3[(k + m' — n)T}]| ] [21: [F(T)3[( — m' — n)T]|?
:LNZZ,go(n— n+m) (4.52)
Employing manipulation similar to those used in deriving (3.2) through (3.7) of Chapter 3,
we have
> Z, o(n —m')p(n +m')
= Zztp(zk)cp(ﬂ) + 2;2;90(216 +1)p(20 +1)
= %zzso(kw(n 5 T 1o (R)e()
k k1
1 L1 ,
= T S0+ [0ttt [Tt (4.53
However,
S(-1olk) = S0 [T - TP (45)
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Substituting exp(jrk) for (—1)*, we obtain

;(—1)%(7“) = Xk: >_exp(jmk) [#(pT,)3[(p — k)]
=Y IF ()" Xk:exp(ﬁk) I5((p — )T . (4.55)

Letting k' = p — k on the right-hand side of (4.55), we have

D (1) (k) = Z [7(pT) " Z expljn(p — k)] |3(K'T5)[*

k
= ZeXP (j7p) Ir pT)|* Y exp(—jm k) [3(K'T)| . (4.56)
kl

The term 4 |3(k'T;)|? exp(—jnk') is the discrete Fourier transform of {|3(k'T,)|?} evalu-
ated at frequency 1/(27,) = 2B and the result can be readily obtained from the follbwing
observation. Since the Fourier transform of |3(t)[? is the convolution of that of §(t) with
itself, it has an extent from —2B to 2B and is zero outside. It follows that the term

> wr |8(K'T)|* exp(—jmk') reduces to zero. Consequently, we have

mk
2N7'ZZ Z (kT —nT)exp( ]27:’—]7)
< m;;wwo |

_ Zlﬁ ZZ 7 (pT)3((p — k)Tsllz]
S ;v PL) S| ]

From the derivation of (4.50), it is seen that the equality in the above relationship holds if,
and only if,
F(kT,)3[(k + m — n)T,] = CF[(k + m)Ty)3[(k — n)T;)] (4.58)

for all k,n,m and some complex constant C. It should be pointed out that relationship

(4.57) is obtained under the assumption that the sampling rate is higher than twice the
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signal Nyquist rate. Also, a generalized version of (4.57) for a continuous signal can be
found in [17].

Assume that the number of samples is large enough such that

& L 0TI & BFGT ] = 5 (4.59)
and
F ST = EISRT)P] = 5. (4.60)
Thus, from (4.57) we have
mk N1 N3
2N2ZE *(kTs —nT)exp( ]2%7) §—4—-8—1=§§Z. (4.61)
or equivalently,
2N2 ;; Zr(kT )3* (kT —nT)exp( ]27r%k) < Eiizliﬁ' (4.62)

The left-hand side of (4.62) gives the mean-square value of the receiver since the fast Fourier
transform algorithm assumed for the receiver inserts a scaling factor 1/2 at’ each butterfly,
and the output of the fast Fourier transform is 1/N times the discrete Fourier transform
written inside the magnitude sign in (4.61). Therefore, p3 < 1/(324N).

It is also possible to obtain a lower bound for p2. Since the magnitude square of a

quantity is non-negative, we have

s (n S,NT)

2 1

R

2} > 0. (4.63)

»l

It follows that

S5l (7 5z)

or, equivalently,




However,

s (kTs, )

= XX AR ()3 (T, — KT)S(4Ts —kT)eXP[ m“”NJ]
= N> |f(pTs) Xk: T,)|*. (4.66)

Thus, applying (4.66) to (4.65), we have

2N2 Z Z e <"’T” NT, )

Using the assumption (4.59), we have

= 4]1\72 [E |7~'(PT3)|2 zk: |§(k’T3)|2} . (4.67)

4 N2
) > )
2N2 ZE s < Ts) = 324’ (4.68)
or equivalently,
4
1
> . .
2N2 ZZ |N¢” ( * NT, ) = 324N? (469)

For the same reason as explained in the paragraph following (4.62), we have p3 > 1/(324N?).

Thus, we arrive at the conclusion

4

< 1
= 324N

1
< 2
394Nz — H3 ™ 2N2 (4.70)

Z kT,)3* (kT; — nT,) exp (—j27rmwk>

when the sampling rate is higher than twice the Nyquist rate and relationship (4.59) can be
satisfied. As an illustration, we compare the bounds obtained in (4.70) and the mean-square

value of the discrete ambiguity function of two signals in the following example.

Example 4.1

In this example we calculate and plot the mean-square value of the ambiguity function
of two signals, assuming the number of samples obtained are 8,16,...,256 for each signal.
Since the validity of (4.70) does not depend on the specific form of the signals {#(kT,)} and
{3(kT;)}, we arbitrarily assume that the received samples are noise-free so that #(kT,) =

§(kT,).
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The first set of signal samples are sequences of random complex numbers. The real and
imaginary parts of the random numbers are uncorrelated and each of them is uniformly
distributed over (—1/v/2,1/v/2). The discrete ambiguity function is calculated for each
sequence, and the magnitude square of each point of the obtained ambiguity function is
summed and then averaged to obtain the mean-square value of the discrete ambiguity func-
tion of that sequence. The number of samples for each sequenceis N = 8,16, ..., 256. Figure
4.3 depicts the bounds as given by (4.70) and the actual mean-square values. It is seen from
Figure 4.3 that the mean-square magnitude of the discrete ambiguity function is roughly
proportional to 1/N?.

The second set of samples are sequences of samples obtained from sampling the signal

i) = -\}—irect (t -(324> exp (j-;it2> . , (4.71)

The sampling process is performed in the time interval from 0 to 1.6. The sampling rates

are 8/1.6, 16/1.6,- - +,256/1.6 to obtain sequences of N = 8,16,... ,256 samples. Figure 4.4 -
shows both the bounds given in (4.70) and the actual mean-square values. It can be seen
from Figure 4.4 that the mean-square magnitude of the discrete ambiguity function is within
the bounds, being roughly proportional to 1/N, even though the signal does not quite satisfy
(4.59). O

The propagation and accumulation of the quantization noise power is analyzed in the
following. After Step 1 of the computational algorithm, the noise power can be obtained

using the result (4.12), which gives

E[[#(kT)"[Elles|”] + E3(KT,)*]El -]
—-2b -2b -2b
%(26 +26 )=29 (4.72)

where it was assumed that 1/3 > 2720/12. After Step 2, the power of the noise is 1/N times

of

IR

the noise power from the previous step plus the noise power generated by the fast Fourier
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transform, which according to (4.22) is 272 - 5/3. Thus,

: 5 o 5
ol = ‘]’V—l LRI R b (4.73)

The noise after Step 3 consists of two parts; one is from the calculation of magnitude-square
of a complex number, and the other is from the noise of the previous step. To calculate
the magnitude-square of a complex number, two real multiplications are performed, and the
noise generated has power 272 /6. The error caused from the input noise has power p2o? as
indicated by the discussion following (4.12). Thus,

27% 7% 5 1
2 _. I -
A=t (3+55)- (4.74)

From the foregoing derivations, the output noise-to-signal ratio is given by

N 2
2% (54N2 + 51—2 + 4) < 5;% <27 (54N + % + %) : (4.75)

The above relationship indicates that the output noise-to-signal ratio is at best proportional
to N, with the worst case as being proportional to N2. It is important to point out that the
output signal power is linearly proportional to the input signal power as can be seen from the
derivation of p3. Thus, the output noise-to-signal ratio degrades as the input signal power
decreases. It should also be noted that the derivation of (4.75) assumes the quantization

errors are uncorrelated.

4.2.2 General Form Discrete Wigner-Ville Distribution Based
Receiver

In this subsection, we evaluate the effect of quantization error on the test statistic along a
cut in Doppler as calculated by the discrete Wigner-Ville distribution based receiver (3.22).
The receiver (3.22) performs convolution between the discrete Wigner-Ville distributions of

the received samples and of the reference samples. Due to computation speed requirements,
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this convolution is assumed to be based on the convolution theorem. Hence, there are mul-

tiple fast Fourier transforms to be encountered in the receiver. Recall from the previous

section, where we examined the quantization effects in the fast Fourier transform computa-

tion, that it is important to raise the signal power at the input of the transform as high as

possible to achieve a low ratio of the output quantization error power to the output signal

power. Therefore, we insert scaling factors between cascading fast Fourier transforms in the

receiver to raise the signal power and to maintain a low output noise to signal ratio. The

placement and the magnitude of these scaling factors are chosen in the manner such that no

overflow will result. The arithmetic performed in the receiver (3.22) can be described by the

following 10-step algorithm.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Cross multiply the received samples to form the sequence {7(kT,)#*(nT, — kT})}.

Perform N-point fast Fourier transform of the sequence obtained from Step 1. Let
m/(NT,),—N/2 < m < N/2 —1 denote the frequency arguments of the resulting

sequence.

Multiply exp(jmmn/N) to the sequence resulted from Step 2 to obtain the auto-

Wigner-Ville distribution of the received samples.

Perform 2N-point fast Fourier transform over the frequency arguments of the result

of Step 3. Denote the transform domain by u.
Multiply a constant N to the sequence resulted from Step 4.

Perform 2N-point fast Fourier transform over the frequency arguments of the ref-

erence Wigner-Ville distribution.
Multiply a constant N to the sequence resulted from Step 6.

Cross multiply over the arguments of u the resulting sequences from Step 5 and

Step 7.




Step 9. Perform 2N-point inverse fast Fourier transform over u of the sequence resulted

from Step 8.
Step 10. Sum over the time arguments of the result of Step 9.

A block diagram describing the computation in this algorithm is shown in Figure 4.5. It
should be pointed out that the abc;ve algorithm assumes that the reference Wigner-Ville
distribution is readily available and calculation in real time is not needed. Only minor
modifications to the following analysis is needed if this assumption is not satisfied.

In a manner similar to the derivation of the previous subsection, it can be shown that the
signal power p} = 1/9 after Step 1, and p2 = 1/(9N) after Step 2. Since the magnitude of
exp(jmmn/N) is unity, the signal power after Step 3 is u2 = 1/(9N). Whether it is possible to
place a scaling factor at this point and how much it may be can be determined by examining
the greatest magnitude of the sequence after Step 3. Using the Cauchy-Schwarz inequality

the upper bound on the magnitude of the sequence resulted from Step 3 is given by

m(2k — n)]

%Xk:F(kTs)F*(nT, — kT,) exp [—jw N

L s
<FIFGTIP (476)

where the factor 1/ inside the magnitude sign on the left-hand side is included to reflect
the fact that the fast Fourier transform algorithm under consideration here introduces a
scaling factor of 1/2 at every butterfly. Applying the assumption (4.59) to the right-hand
side of (4.76), the upper bound on the magnitude of the sequence resulted from Step 3 is
1/3. On one hand, it is seen that a scaling factor of 3 can be placed after Step 3 without
causing overflow; on the other hand, this scaling may not be significant enough to justify
the additional hardware complexity. Therefore, we choose to omit scaling at this point. The
signal power after Step 4 is 1/(2N) times p2, i.e., p2 = 1/(18N?). Note that the sequence

resulted from Step 4 is given by

1 1 . m . mu
5N |5 (2., “—NT)] exp (j2r )

152



-

{7 (kKT)) 7 (nT,-kT,)}

110) r
—»| AD | Cross »| FFT >®_
converter multiply
2N
Wi ()
' FFT
*—@4—— FFT Cross
multiply Wg )
FFT |g—
2N
(a) Computational flow graph
s
e N
r(t) r u? w2 ‘
»| AD | Cross ! p| FFT |2
converter multiply Gf Gg
2N
2 2 2
K Ky Wy
PR R
2 2 2 2 2 | FFT 2
i Ho Hg Cs 04 O3
4—@ FFT |-4— Cross
2 2 2 | multiply 2 2 N
S g T ne W= ()
FFT |-a—
o7 K
2N

(b) Signal and noise power propagation
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1 l . - . m(2k —n) u
2N;{N;r kT, )" (nTs — kTs)exp[ I ]}exp(]27r2N)

N7L.7 2)#*[(n — u)/2], n + u) is even
R wm

where the factors 1/(2N) and 1/N are included since the fast Fourier transforms employ a
scaling factor of 1/2 at each butterfly, and the Poisson’s sum formula was used to obtain the

third line of the above relationships. Hence, we have

ZW ( » NT)eXp (]2”2N)

The above result indicates that the maximum magnitude of the output of Step 4 is 1 /N.

< 3 il + )/ [~ w2 < & (479

Therefore, it is possible to introduce a scaling factor N after Step 4 to raise the signal power
without causing overflow. Since this scaling is significant for large N, we introduce this
scaling at Step 5. Thus, uf = N?u3 = 1/18. From Figure 4.5, it is clear p2 = p2 and
pf = p? = 1/18. Assuming the output of Step 5 and Step 7 are uncorrelated, the signal
power after Step 8 is uf = p2 - u7 = 1/324. The signal power after Step 9 is p2 = p2/(2N) =
1/(648N). There are two approaches to derive the output signal power. First, the output
signal can be assumed to. be a sum of 2N uncorrelated random variables from the output
of Step 9. The mean square magnitude of these random variables is 2/(81N). Note that
in this summation scaling is needed to prevent overflow. The scaling can be carried out
in a manner similar to that used in the fast Fourier transform computation by introducing
a scaling factor of 1/2 to each pair of summations. Figure 4.6 depicts the special case of
N = 3. With the same reasoning as used in the radix-2 fast Fourier transform discussion,
summation of 2NV numbers introduces a factor of 1/(2N) to the output power. Thus, we
have ui, = p2/(2N) = 1/(1296N?). Another method of obtaining an estimate of the output
signal power is to apply the result (4.70) to the relationship (3.22) of Chapter 3. Recall
that (4.70) describes the mean square magnitude of the output of the conventional receiver.
The output of the conventional receiver considered is a scaled version of the left-hand side

of (3.22) due to the scaling at each butterfly of the fast Fourier transform. In fact, after
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Figure 4.6: Summation with scaling factor included
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taking the magnitude square, the output of the receiver analyzed in the previous subsection
is 1/N? times the left-hand side of (3.22). Hence, the mean square magnitude of the left-
hand side of (3.22) is N* times (4.70). The Wigner-Ville distribution based receiver can be
analyzed in a similar manner. If no scaling were introduced in the fast Fourier transforms,
the convolution of two Wigner-Ville distributions performed in Steps 4, 6, 8, and 9 would
be twice the direct form convolution given in the right-hand side of (3.22). However, while
thé multiplication by N in Steps 5 and 7 cancels out the scaling in the two N-point fast
Fourier transforms in producing the Wigner-Ville distributions, the two 2N -point forward
fast Fourier transforms and the final summation of 2N numbers introduce a total scaling of
(2N)7® to the output. Finally, considering the factor 1/N on the right-hand side of (3.22),
we conclude that the output of the Wigner-Ville distribution based receiver as specified in
this subsection is 2 - 1/(8N?%) - N = 1/(4N?) times the right-hand side of (3.22). With the
foregoing observation, we conclude that the mean-square magnitude of the output signal of
the Wigner-Ville distribution based receiver is N*-(4N?)~2 times (4.70) and is in the interval
[1/(5184N?),1/(5184N)]. It is seen that the previous result using the assumption that the
outputs of Step 9 are uncorrelated random variables is in this interval for N > 4. In the
following analysis we will use p2; = 1/(1296 N?) as the estimate of the output signal power.

Next, we consider the quantization error. As before, the initial quantization error due to
analog-to digital conversion of the received samples is assumed to have power o2 = 272 /6,
It will also be assumed that the finite register length storage of the factors exp(jrmn/N)
used in Step 3 and the reference Wigner-Ville distribution used in Step 6 introduces errors

with power 2% /6. Using the results (4.7) and (4.12), the noise power after Step 1 is

1 1 11 4
Uf_—_z—?b(_+_.l+_._):2-2b._

. 4.
3 3 6 3 6 9 (4.79)

After Step 2, the noise consists of two parts: one from the previous step and the other from

the computation of the fast Fourier transform.

5 o2 5 4
2 __ o926 Y ' 1 _o9=2 (Y F—. 4.80
92 =2 3 N 2 (3 9N) ( )
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Using the result (4.7) and (4.13), the noise power after Step 3 is

1 5 4 1 1 25
2___2-—2b< _) =2—2b.( ) '
s 3+3+9N+9N 6 2+ oN (481)

As in (4.80), the noise power after Step 4 is

5 s (5 1 25 |
—+2N 27%. (-+——+ ) (4.82)

2 — 2-—2b .
4 3 3 N ' 18N2

It is clear that the noise power o2 = N%0? after Step 5. Assume that the power of quanti-
zation error resulting from storing the reference Wigner-Ville distribution is 272°/6. After

Step 6, the noise power is

(5 1 1
e=2 2”-(3+-6- W) | (4.83)

Clearly, 02 = N%02. Using (4.7) and (4.12), the noise power after Step 8 is

22 5N? 13N 133
2 _Z —2b
05 = =3 +pdoltpl-ol=2 (27 +216+324) (4.84)
After Step 9, the noise power is
5 o} 5N 733 133
2 _o9—2b_ ° 8 _ 9-2b
o=2 " gty =2 (54 Tt 648N) (4.85)

The noise at the output consists of two parts; one is from the noise output at Step 9 and
the other is from the scaling of 1/2 in the summations in Step 10. After the scaling in the
summations, the power of the noise originated from Step 9 is 1/(2N) of its input power, i.e.,
02/(2N). To obtain the noise power from the scaling by 1/2 in the summations, we note that
the error power of dividing a complex number by 1/2 is 272°/4 as indicated in the paragraph
following (4.14). Then, with the assumption of uncorrelated noises, the noise power from
adding two samples is 2(272°/4). With the same procedure as used in deriving (4.21) for the
noise output of a radix-2 fast Fourier transform, we can calculate the noise power generated
from the scaling in Step 10 by

P 9-2b 1 2(v'-m~—1)
7 = 22( e (2)

m=0

92 | (4.86)

1%
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where v/ = log,(2N) and it is assumed that 2NV > 1. With the assumption of uncorrelated

noise, we have
2

2 _ O 5. (113 733 133 >
%10 = 5y Toa=2 (108 * 864N T 120687 ) (487)
Thus, the output noise-to-signal ratio is
2 219
5‘1;-9 =27%. (1356N2 + 29y + 133) : (4.88)
Hio 2

‘The above relationship indicates that the output noise-to-signal ratio is approximately pro-
portional to N2, It is important to point out that the output signal power is linearly
proportional to the input signél power as can be seen from the derivation of y2,. Thus, the
output noise-to-signal ratio degrades as the input signal power decreases. It is also seen that
the scaling by N at Step 5 and Step 7 is important. The noise-to-signal ratio would be worse

without those scalings.

4.2.3 Discrete Time-Frequency Correlation Function Based Re-
ceiver

In this subsection, we evaluate the effects of quantization error on the test statistic along
a cut in Doppler using the discrete time-frequency correlation function based receiver (3.42).
In this receiver, there are multiple fast Fourier transforms to be performed. Recall that it
is important to raise the signal power at the input of a fast Fourier transform as high as
possible to achieve a low ratio of the output quantization error power to the output signal
power. Therefore, we insert scaling factors between cascading fast Fourier transforms in the
receiver to raise the signal power and to maintain a low outpuf noise-to-signal ratio. The
placement and the magnitude of these scaling factors are chosen in the manner such that no
overflow will result. The arithmetic performed by the receiver (3.42) of Chapter 3 can be

described by the following 7-step algorithm.

Step 1. Cross multiply the received samples to form a sequence {7(kT,)7* (kT — nT;)}.
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Step 2. Perform N-point fast Fourier transform of the sequence from Step 1, to obtain the

time-frequency auto-correlation function of the received samples.

Step 3. Multiply the reference time-frequency correlation function $§[nTs,m/ (NTy)] by
explj2rmp](2N)]

Step 4. Cross multiply the result of Step 2 and Step 3.
Step 5. Sum over the frequency arguments of the sequence resulting from Step 4.
Step 6. Multiply the sequence resulting from Step 5 by 2N.

Step 7. Perform 2N-point fast Fourier transform over the time arguments of the sequence

resulting from Step 6.

A block diagram describing the computations in this algorithm is given in Figure 4.7. The
above algorithm assumes that the reference time-frequency correlation function is readily
available and calculation in real time is not required. However, only minor modifications of
the following analysis are needed if this assumption is not satisfied.

The signal power u? = 1/9 after step 1, and p2 = 1/(9N) after Step 2. To examine
whether it is possible to introduce scaling after Step 2 without causing overflow, we need to
know the upper bound of the magnitude of the output of Step 2. Using the Cauchy-Schwarz

inequality, we have the greatest magnitude of the output from Step 2

% S HKL)F (T, = nT:)exp [— jzw%’“} ’ < -]\% CH; (4.89)
where the factor 1/N is included to reflect the fact that the fast Fourier transform introduces
a scaling factor of 1/2 at every butterfly. By the assumption (4.59) it is seen that the
maximum magnitude of the output of-Step 2 is 1/3. Therefore, we can raise the signal

power by introducing a scaling factor of 3 without causing overflow. On the other hand,

this amount of scaling may not be significant enough to justify the additional hardware
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Figure 4.7: Computational flow graph of the discrete time-frequency correlation function

based receiver
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complexity. Therefore, we choose to omit scaling at this point. The output signal power of
Step 3 is the same as the input, which is 1/(9N), since the magnitude of exp[j2rmp/N] is
unity. Since the power of the reference time-frequency correlation function is the same as
12, the signal power after Step 4 is u2 = p2 - u3 = 1/(81N?). The summation in Step 5 is
calculated in the same manner as that used in Step 10 of the previous subsection to prevent
“overflow. The output signal power after Step 5 is 1/(2N) times the input as a result of the
scaling factor of 1/2 at each summation pair. Therefore, p2 = 1/(162N3). The greatest

magnitude after Step 5 can be obtained by using the Cauchy-Schwarz inequality
2
P
2N 2N 2% ( “ NT, ) Z (”Ts’ NT, ) P [’2”21\[”
1 2 [ 1 P
< e .
= {2NZ }{2N , ("TS’NT) } (4.90)

where the factor 1/(2N) is included on the left-hand to reflect the fact that the summations

s (nTs,

V)

are performed with a scaling factor of 1/2 added. Consider the term in the first pair of

braces on the right-hand side of (4.90)

2

S #(KT,)7 (KT, — nT,) exp (_m%@)

N
> 3 F(KTL ) (KT, — nT,)7 (pT,)7(pTs — nTy) exp [—jQW_mU;v_ p)}
k p '

(KT, |2 |[F(KT, — nT})|? (4.91)

where the factor 1/N has been included to reflect the fact that 1/2 is included in each
butterfly of the fast Fourier transform. By the previous assumption, |F(kT5)| < 1, for all k;
therefore |F(kT;)|? < 1, for all k. It follows that

2

1
2N

- 2]1\,2 S FRT)E FT TP < . (4.92)
k

¢T (nTs, 5N

V)

The same conclusion can be drawn about the term in the second pair of braces of the right-

hand side of (4.90). Therefore, the greatest magnitude of the output after Step 5 is given
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by
(4.93)

—2—1]\—,%:@- (nT,, NiT) é: (nTs, NiT) exp [j27r%] < élﬁ
With (4.93), it is clear that we may multiply a factor of 2N to the output of Step 5 to raise
the signal power without causing overflow. Then, we have p2 = 4N?u2 = 2/(81N). The fast
Fourier transform in Step 7 is a 2N-point transform. Thus, Step 7 reduces the output signal
power to 1/(2N) times the input, and x2 = 1/(81N?). On the other hand, we can also apply
the result (4.70) to the relationship (3.42) to obtain an estimate of the output signal power by
taking into account the scaling involved. The scaling involved in the conventional receiver
was analyzed in the previous subsection. The scaling in the time-frequency correlation
function based receiver can be examined in an analogous manner to that given for Step 10
<;f the previous subsection. The result shows that the output signal power is in the interval
[1/(648N?),1/(648N)]. Since 1/(81N?) is in the interval [1/(648N?%),1/(648 N)] for N > 8,
“we will use uz = 1/(81N?) as the estimate of the output signal power in the following
analysis.

Next, we consider the quantization error. As before, the initial quantization error due to
analog-to-digital conversion of the received samples is assumed to have power o2 = 272 /6. It
will also be assumed that the finite register length storage of the reference correlation function
and the coefficients exp(j2rmp/N) used in Step 3 introduces errors of power 272/ 6. Using
the results (4.7) and (4.12), the noise power after Step 1 is

1 11 11 4
2=2—2b,(_ 11 _._):2—26.__ 4.94
71 37376736 9 (494

After Step 2, the noise consists of two parts; one from the previous step and the other from

the computation of the fast Fourier transform.

5 o? 5 4
2 -2 . 1 —~2b . . .
%2 = 2 3 N 2 (3 9N) (4 95)

Using (4.7) and (4.13), the noise power after Step 3 is

m 2—2b 1 2—-2b 2—2b
I —| — — _=2-2b.(
exp(j2m N ) 5 + oN 6 + 3

2 _
o3 =

1 1
5 + -——-—54N) (4.96)
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where 1/(9N) is the power of the reference sequence. Using (4.7) and (4.12), the noise power
after Step 4 is

2-—2b

1 113 2% N\
JENP AR N IS R
1= gt Gt gg O 31 5N T 1862 (4.97)

Q

The noise power after Step 5 can be obtained in a similar manner as that in deriving o, in

the previous subsection:

2 1
a§=ﬁ+2—2b=2—2b.<l+gﬁ+

13 50 )
2N '

+

108N2 ~ 972N3 (4.98)

The multiplication by 2N in Step 6 increases the noise power to 62 = 4N?¢2. The output

noise is given by

5 o2 13 50
2=2—2b___ __ﬁ_=2—2b_( ) > .
o 3TN 2N+2+ ot Bene (4.99)
Thus, the output noise-to-signal ratio is
2
:i;g =27%. (162N3 + 162N? + %gN + %ﬁ) : (4.100)
7 .

The above relationship indicates that the output noise-to-signal ratio is proportional to N°.
It is important to point out that the output signal power is linearly proportional to the input
signal power as can be seen from the derivation of p2. Thus, the output noise-to-signal ratio

degrades as the input signal power decreases. It can also be seen that the scaling by 2N at

" Step 6 is important. Without the scaling the output noise-to-signal ratio would be worse.

4.3 Simulation Results

To verify the theoretical results (4.75), (4.88), and (4.100), we perform computer simu-
lations using two types of inputs for each of the receivers considered. The first type of input
is sequences of random complex numbers. The second type of input is sequences of samples
obtained from sampling a [fm signal. The simulations are performed on a SUN Sparc work-

station using the software package MATLAB. Due to limitations on computation speed, the
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input sequences are confined to N = 8 to N = 256, and 1024/N runs are carried out for
each N, e.g., 128 runs are carried out for N = 8. In each run for a particular N, the input
sequence of length NV is first generated and then the test statistic in the forms of (4.1), (3.22),
and (3.42) are computed. The computation of the test statistic is performed both in dou-
ble precision floating-point arithmetic and in fixed-point arithmetic. The results obtained
in double precision floating-point arithmetic are considered to be accurate and are used to
determine the experimental output signal power. The wordlength used in the fixed-point
arithmetic is b = 16 bits plus one sign bit. The magnitude squared difference between the
fixed-point and floating-point fesults are used to determine the experimental quantization
error power. The experimental noise-to-signal ratio is then averaged over all runs for that
particular V.

In the generation of the input sequences, the noise in the received samples is assumed to
be Gaussian distributed with zero mean and variance 1 /6. For simplicity, we also assume
that the delay and Doppler in the target return are zero. It should be emphasized that the
assumption about the noise is not vital in the analyses since we are only concerned with the
effects of quantization and finite-precision arithmetic and not the noise performance of the

receiver.

Random Number Sequence

In the first set of experiments, we used as reference a sequence of uncorrelated random
complex numbers whose real and imaginary parts are uniformly distributed over (-1/v/2,1/ V2).
The above sequence plus the Gaussian noise samples sequence with the sum truncated to
the interval (—1/v/2,1/4/2) is used as the received samples. The procedure of obtaining
the experimental noise-to-signal ratio as described in the beginning of this section is then

carried out for the conventional matched filter based receiver. The result shown in Figure
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4.8 is obtained by averaging the noise-to-signal ratios of every cut in Doppler of the test
statistic. In other words, the result is obtained as an average over the entire domain of the
test statistic. The result confirms the theoretical prediction. The result shown in Figure 4.9
is obtained from the cut of the statistic at the hypothesized delay 7y = 0. It is clear that
the noise-to-signal ratio is much lower than the average and is lower than the theoretical
prediction. However, the noise-to-signal ratio still increases roughly proportional to N?, but
a little milder, as predicted. Due to limitations on computation speed, we will only simulate
over the cut of the test statistic at 7y = 0, but not generate every cut of the statistic and
obtain the average in the following experiments. The experimental and theoretical noise-to-
signal ratios are plotted in Figure 4.10 and Figure 4.11 for the receivers (3.22) and (3.42),
respectively. The simulated noise-to-signal ratios increase with the number of samples a little
milder than the theoretical predictions. The discrepancy can be explained from the following
observations. First, the simulations were performed over the cut of the test statistic where
the peak of the ambiguity function occurs. On this cut of the test statistic, it appears that
the signal has higher power than predicted, i.e., the signal samples have higher variance than
the average. Secondly, the theoretical output noise-to-signal ratios were derived based on the
assumptions about the properties of the signal samples and quantization errors. Especially,
the quantization errors were assumed to be uncorrelated from sample to sample. However,
it appears that the quantization errors are mildly correlated in the simulations. Nonetheless,
in such cases the theoretical results still provide good guidelines to the output noise-to-signal

ratios.

Linear fm rectangular pulse

In the second set of experiments, we used as reference a sequence of samples obtained
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from sampling the signal

§(t) = %rect (t 528) exp ('gtz) . (4.101)
The sampling is done in the interval [0,1.6). The sampling rates 1/T, are 23/1.6,2%/1.6,
---,28/1.6. The same sequence plus the noise with the sum truncated to t_he interval
(—1/4/2,1/+/2) is used as the received samples. The experimental and theoretical noise-
to-signal ratios are plotted in Figures 4.12 to 4.14 for the receivers (4.1), (3.22), and (3.42),
respectively. In each receiver, the simulated noise-to-signal ratios increase with the number
of samples a little milder than the theoretical predictions. The reason for the discrepancy

should be the same as that for the previous case using random complex numbers as inputs.

4.4 Discussion

In this chapter, we dealt with the quantization error in the conventional matched filter
based receiver, the general form Wigner-Ville distribution based receiver, and the time-
frequency correlation function based receiver, as given by (4.1), (3.22), and (3.42), respec-
tively.

In Section 4.1, we reviewed the derivation of the mean-square magnitude of the output
quantization error in calculating radix-2 decimation-in-time fast Fourier transforms. Special
attention was paid to whether the coefficients in the fast Fourier transform algorithm are
from a look-up table or from in-place calculation in the transform algorithm. This distinction
is only recognized in the literature, but not ana,lyzedr accordingly. It is shown that the result
on noise-to-signal ratio due to coeflicient quantization found in the literature is for the case
where the coefficients are from a look-up table. For the case where the coefficients are
obtained from in-place calculation, it is shown analytically in this work that the effect of

quantization error is much worse.
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In Section 4.2, we examined the effects of quantization error on the receivers. The ratios
of the output quantization noise power to the output signal power were obtained. In order
to obtain these results we also derived the upper and lower bounds of the mean-square
magnitude of the discrete ambiguity function. The output noise-to-signal ratios were then
verified by computer simulations using two types of input. It was shown that using a random
number sequence as input, the simulated ﬁoise-to-signal ratio averaged over the entire domain
of the test statistic is consistent with the theoretical prediction for the conventional receiver
case. Due to computational limitations, the rest of the simulations were performed over one
cut of the test statistic. In suéh cases the noise-to-signal ratios increase with the number
of samples more moderately than predicted. The discrepancy can be explained from the
following observations. First, the simulations were performed over the cut of the test statistic
where the peak of the ambiguity function occurs. On this cut of the test statistic, it appears
that the signal has higher power than predicted, i.e., the signal samples have higher variance
than the average. Secondly, the theoretical output noise-to-signal ratios were derived based
on the assumptions about the properties of the signal samples and quantization errors.
Especially, the quantization errors were assumed to be uncorrelated from sample to sample.
However, it appears that the quantization errors are mildly correlated in the simulations.
Nonetheless, in such cases the theoretical results still provide good guidelines to the output
noise-to-signal ratios. Finally, in the attempt to raise the signal power so as to improve the
output noise-to-signal ratio, we introduced multiplication factors in the calculation of the
test statistic. The amount of these factors and their positions were chosen in such a way

that no overflow would occur.
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Chapter 5

Conclusions

In this work, we studied issues related to the application of time-frequency distributions
in radar detection and parameter estimation problems. The analysis was from a receiver
structure standpoint.

To facilitate digital signal processing, we studied various forms of the discrete ambigu-
ity function and the discrete Wigner-Ville distribution in both the time-domain and the
frequency-domain. Connection between the discrete ambiguity function and the optimal
radar receiver was established. The relationships between the discrete ambiguity function
and the discrete Wigner-Ville distribution and their continuous counterparts were also exam-
ined. Sampling criteria to avoid aliasing were analyzed. It was concluded that the discrete-
time samples used in generating either time-frequency distribution have to be obtained at
twice the Nyquist rate to prevent aliasing. This sampling criteria can be satisfied through
physically sampling the signal at twice the Nyquist rate or via interpolation. In generating
the frequency-domain representation of either time-frequency distribution, the sampling rate
has to be twice the Nyquist rate and the sampling process has to last twice as long as the
signal duration. New procedures to recover the continuous time-frequency distributions from
their discrete counterparts were given. The procedures are simpler than the ones previously

derived. They can be used as long as the sampling rate is greater than the Nyquist rate and
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the observation interval is longer than the signal duration. The restriction is that they can
be used to recover only those portions of the time-frequency distributions that are alias-free.

Using the analysis of the discrete Wigner-Ville distribution and the discrete ambiguity
function, we derived the criteria for the realization of the optimum discrete radar receiver
based on the discrete Wigner-Ville distribution and on the discrete time-frequency correlation
function. It was shown that correlation of the discrete Wigner-Ville distributions of the
received samples with the reference Wigner-Ville distribution can be used to generate the
test statistic for optimum detection and estimation for a Gaussian noise environment if
the prescribed sampling criteria are satisfied. Matched filtering the discrete time-frequency
correlation functions of the received samples with the reference time-frequency correlation
function can also generate the test statistic. Schemes to reduce the requirement on the
sampling rate and to reduce the requirement on the duration of the sampling process were
also devised. The applications of the radar receivers in the alternative form were illustrated
by means of two examples. It was shown that the Wigner-Ville distribution based receiver
1s useful when the transmitted signal is unknown such that matched filtering is not feasible.
In this case, the Wigner-Ville distribution of the received signal can be used to extract
information about the transmitted signal. It was also shown that a time-frequency correlation
function based receiver is useful for estimating the instantaneous frequency of the target
return for a broad class of transmitted signals.

Finally, we considered the quantization error in digital implementation of the conventional
matched filter based receiver, the Wigner-Ville distribution based receiver, and the time-
frequency correlation function based receiver. The derivation of the mean-square magnitude
of the output quantization error present durir}g calculation of the radix-2 decimation in time
fast Fourier transform was reviewed. Special attention was paid to whether the coefficients in
the transform are from look-up table or from in-place calculation in the transform algorithm.

The results on coefficient quantization found in the literature are for the case where the
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coeflicients are from a look-up table. For the case where the coefficients are obtained from
in-place calculation the effect of quantization error is much more severe. This result was only
recognized previously, but not analyzed accordingly. We derived the output quantization
noise fo signal ratio for each receiver. In the process we also derived the upper and lower
bounds of the mean-square magnitude of the discrete ambiguity function. In an attempt
to raise the signal power so as to improve the output noise-to-signal ratio, multiplication
factors were introduced in the calculation of the test statistic. These factors were chosen
and placed at positions such that no overflow would occur.

The output noise-to-signal ratios were verified by computer simulations using two types
of input. It was shown that using a random number sequence as input, the simulated noise-
to-signal ratio, averaged over the entire domain of the test statistic, is consistent with the
theoretical prediction for the case of a conventional matched filter based receiver. Due to
computational limitations, the rest of the simulations were performed over one cut of the
test statistic. In these cases the noise-to-signal ratios increase more moderately with the
number of samples than predicted. Nonetheless, in such cases the theoretical results still

provide useful guidelines to the output noise-to-signal ratios.
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Appendix A

Some Useful Properties of
Discrete-Time and
Discrete-Frequency Signals

In the following we discuss a few properties of signals that can be assumed to be es-
sentially limited in both time and frequency. First, we consider the reconstruction of the
continuous signals from their samples in the time and frequency domains. We then consider

the relationships between inner products of continuous signals and discrete signals.

A.1 Time-domain interpolation

Assume that a complex signal §(t), with its Fourier transform é( f), is essentially duration

and frequency limited to [0,7) and (—B, B), respectively. It follows that

2oy _ | To Themco §(KT) exp(—j2m fET), for |f] < 55
G(f) = { 0, otherwise (A-1)

where 1/Ts > 2B. The infinite summation in the above relation is used with the un-
derstanding that zeros can be appended to the finite sample sequence. Also, instead of
requiring | f| < B, we have allowed 1/(27}) to be the bound since the spectral components of

G(t) are essentially limited to (—B, B) and approximately zero outside. Let s, (¢) be a fre-
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quency shifted version of §(t), such that gs, (t) = §(t) exp(j2x fpt) and its Fourier transform
Gy (f) = G(f — fp)- Since

Gl - o) =T 35 T expl—2n(f = F)KT), for|f—fol < 7= (A2)
k=-—o00 8
and G(f — fp) = 0, otherwise, we have
X _ Ts Eo.;-—oo g(kTs) exp[—j27r(f - fD)kTs], for 'f —~ fDl < _1_; .
Gro(f) = { 0, ‘ otherwise. i (A-3)

Taking the inverse Fourier transform of both sides of the above relation, we have the expected

result, namely,

d1o(0) = exp(i2n o) [ I CAREC (A4)

=00

However, if 1/T, > 2(B + |fp|), or equivalently |fp| < (1/Ts — 2B)/2, can be assured, we

can rewrite (A.3) as

éfp(f) — { Ta Z?:—oo g(kTa)exP[_j27r(f - fD)kTs]a for |f| < EIT; (A5)

0, otherwise,

Taking the inverse Fourier transform of both sides of the above relation, we find that samples

of g¢,(t) can be used directly and

. X . . sinw(t/T, — k)
9ip (t) — k;w g(kTs) eXp(]27TkaT3) r(t/T, _ k) . (A6)
A.2 Frequency-domain interpolation
Next, let A(t) be a train of periodic repetitions of §(t) with period T, > T, i.e.,
h(t)y= Y. §(t — kTp). (A7)

=00

It follows that A(t) can be expanded in a Fourier series, which in this case reads

. 1 & (1 o |
h(t) = T 1_2: G (E) exp (]27I‘T;t) . (A.8)
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We can then write

1 o0 ~ _I_ . L _
gt) = { ngz:—oo G (Tp) €exp (]277Tpt) , for [t —T/2| < T,/2 (A9)

otherwise.

In (A.9) note that we have allowed |t —T/2| < T, /2, instead of imposing the more stringent
condition |t — T'/2| < T'/2, since §(t) is limited to the time interval (0,7) and zero outside.
Let §,(t), with its Fourier transform G,(f), be a time shifted version of g(t), such that

g-(t) = g(t — 7). Since

> (1
gt —1) :Ti > G(T)explﬁw—};(t—r)l, for t_T_%: <% (A.10)
I=—0c0 p p

and §(t — 7) = 0, otherwise, we have

5.0 :{ ETR G () e [i2ra(t—7)|, for|t—1—T/2| < T,/2 (AL1)

otherwise.

Taking the Fourier transform of both sides of the above relation, we have the expected result,
namely,

~ _ , [ sinw(fT, — 1)

G (f) = exp(—j2n f1) {I_Z_:OOG ( ) exp [ jm (f Tp) T] =0 [ (A.12)
However, if T, > (T + |7]), or equivalently || < (T, — T'), can be assured, we can rewrite

(A.11) as

g(t_T):{ R G (£)exp [j2nk(t —7)], for [t—T/2| < T,/2 (A13)

0, otherwise.

Taking the Fourier transform of both sides of the above relation, we find that samples of

G.(f) can be used directly and

6+ £ p§)or (ot 4)7
_si_noon( T, = 1)

UL, - (A4
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A.3 Inner Product

In the following we discuss the properties of the inner product of two vectors of signal
samples. Assume that the two signals ¢1(¢) and go(t) are both essentially limited in time
to [0,7T) and in frequency to (—B, B). Also, assume that N samples are obtained for each
signal. Denote the vectors formed by the samples of g1(t) and g2(t) by g, and g, respectively.

When 1/T, > 2B, the inner product of §, and g, is equal to 1/T times the inner product

of ¢ (t) and §z(t). This can be shown by using the interpolation formula:

| asa

Y hadl IR s1n7r(t/Ts—k) e o (0 sinw(t/Ts — n)
B / {Z x(t/T, — k) }{ > §(nTy) G/Ts =) }dt

n=—0oo

& sinw(t/Ts — k) sinw(t/Ts — n)
= X ¥ almset) [ Sm ey

k=—o00 n=—00

A WAL (A.15)

k=—00

where the last step follows from the orthogonality of the two sinc functions.
Denote the Fourier transforms of g(t) and g2(t) by Gi(t) and G(t), respectively. Also,

denote the discrete Fourier transforms of g, and g, by G, and G’g, respectively. Using a
similar procedure, it can be shown that the inner product of G; and G, is equal to NT,

times that of Gy(f) and Ga(f), when N > T/T,. Specifically,

- [ S o (k) )

© .. 1l \sinm(fNT,-1)
{,}_: G NTS) ~(FNT, —1) }dt

& & k ! o sinw(fNT, — k)sinn(fNT, —I)
-2 (NT ) % (NT ) L. N, —F)  a(NT,—1)

1 & - k Ok
B NT, k=z—:oo G (NT ) G (NT3> . (A16)
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From the generalized Parseval’s theorem, it is known that the inner product of §;(t) and §,(¢)
is equal to that of él(f) and G’z(f), t,J = 1,2. Therefore, for signals that are essentially

limited in duration and frequency, we have
(G1,Ga) = NT(§,,8,)- (A.17)

Note that the left-hand side of (A.17) is phrased in terms of samples of the continuous
Fourier transforms Gj, i = 1,2. There are situations where it is the discrete Fourier trans-
forms that are of interest. For such cases, it may be possible to express (A.17) in terms
of discrete Fourier transforms. Denote the discrete Fourier transform of g§; by G, i=1,2,

where

é»-L-—T%fwa _jorE) 10 (A.18)
: NTS = sk=ogl s) €EXp _]7TN y t=1,4, .

As indicated by (A.1), when the sampling rate is higher than the Nyquist rate, we have

G<N%):é(ﬁ£)’ (A.19)

for —1/2 < I/N < 1/2. Thus, the left-hand side of (A.17) can be written in terms of the

discrete Fourier transforms of the signals instead of their continuous Fourier transforms, i.e.,

(Glaéz) = NTsz(gl’g2>' (AZO)
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Appendix B

Frequency-domain Realization of the
Discrete Time-Frequency
Distribution Based Receivers

In the following we give the detailed derivation for the implementation of the time-frequency

distribution based receivers in the frequency-domain.

B.1 Discrete Wigner-Ville distribution based receiver

B.1.1 Receiver based on the symmetrical form discrete Wigner-
Ville distribution

Moyal’s formula in the frequency-domain in terms of the symmetric form of the Wigner-

Ville distribution, as defined in (2.107), is obtained by

) 4N 1N/2 -1 l l
NTESS S W, (kTS,NT)W (kTJ—V-f)

k=0 |=—N/2
N-1 N/2 1 N/2 -1 . l+

- E5 (5 5 () s (7)) = (+5)]
k=0 I=—N/2 p=-—N/2

N/2-1 I
x5 (57 5 (%
=-N/2

555w

Ny Y&
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where Poisson’s sum formula was used. When the sampling rate is at least twice the signal

Nyquist rate, we have

N/2-1 N/2—-1 I+p I—p I+p
2 X SI(NT)S <NT)SZ<NT3

I=—N/2 p=-N/2

N/2-1 N/2-1 [+p I—p\ A 1+ . (l=p

= 2ot ()5 (50) 5 (52) 2 (72)

M P P NT, NT, NT,
p

X 4 [l+p — I+p\ s (l—p
= y > . 2
L EsGm)alm)s(w)a () oo
Following a similar manipulation as that used in deriving (3.6) and (3.7), we have

) 4N—1 N/2 1 l 3 l
VTS S W ( S,NT>W§2 (kTs,——NTs)

NTS NTS NTS

= N i i{ (NT)S*<
o 886G s G s ey

: zz{( )5 G5 ) ()
v {§1<NT)S*(NT)}*'(B'3)

T,
N 4+ m \ =«
- m n S* }
5 2 2 (s () s (5
Following the same approach as that used in deriving (3.8), we arrive at

) 4]\7—]_ N/2—1 B l Z
N*T: Wy, (kTs, ) W* (kTs, ——)
,;, ,mzj:m S NT, NT,

- lssfe3 B8 {5 (FE) leomms (7))}

m=—00 N=~—~00

{Sl (NT ) [eXp(jm)Sg (NT)” (B-4)

where (A.20) has been used. Denoting exp(jz fNT;)S2(f) by S, (f), we can rewrite (B.4)

to obtain

N-1 N/2—l N l _ l
A - * kT, —
> 3 Wa () Wi (v 57

k=0 I=—N/2
1 & &2 1 o =2
= 2NTS4‘<SI’S2>’ +W|(51,52¢) (B.5)
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Then using (3.10) to rewrite the second term on the right-hand side of (B.5), we have

N-1 Nj21 [ - ! 1 a a2 N .
Z Z WS] ( 39 NT ) WS’2 (kTS’ NT) = QNT: l(Sl’S2>| + §|<31’32c>| (BG)

k=0 l=—N/2
where §,, denotes the time shifted signal samples, whose discrete Fourier transform is S,
From (B.6) it is seen that the second term on the right-hand side of (B.6) reduces to zero
when §; and §,, are non-overlapping in time.

Denote with Wy(-) the result of appending zeros in the frequency dimension to Ws(-)
which was obtained with N = 2T/T,. Let N’ = 4T /T, = 2N. For simplicity, let W4[kT, l/(N'T;)]
denote the symmetric form discrete Wigner-Ville distribution Wy(-) that was obtained with
N' = 4T/T,. With a similar procedure used in deriving (3.16) and (3.17), we have

TS N§:1 Wy ( L ) W, (kT _L)
1 "NT, * NT,

k=0 I=—N/2

gog 21 N2 21 21
= S 5 W (k) 4, (425

k=0 I=—N/2
=1 N2t (Nf2=1 i1y 2y "
= > { > 5 ( ) Sy ( )exp ( 327r—)
Ig) 1=—N/2 |p=—Ny/2 N'T, N'T, N

Nj2-1 21+ g 2l — g gk "
{ > SZ(N’T )S (N'T )eXP( ]271'-]\—77)
q=—N/2
Nj2=1 Nf2Z1 o gp 4 2A—p\ A [20+p\ ~ [20—p
:QNZ Z 51( T )S*( )S*( ’ )SZ( )
l——N/2 p—_N/2 s N/T 2 N Ts NITs

2N (51, sz)\ : (B.7)

Thus, the optimal statistic can be obtained by using W3(+) with N = 2T /T, and zero-padding
instead of Ws(-) with N = 4T/T;.

B.1.2 Receiver based on the general form discrete Wigner-Ville
distribution
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To develop a receiver based on WS( -), we have

N-1 N/2-1

I\ . I
NoT W ( : ) W (kTs, )
Ig z—;\r/z 5 NT,) % NT,
N-1 N/2-1 ( N/2-1
_ p I—p . (2p =Dk
- 5 S s (@) () T
N/2-1
q Lfl—q (2¢ =Dk
Z Sy ( ) S ( ) exp [j ANk S A
{q__m NT, NT, N

N/2-1 N/2-1 N/2-1

X X X

I=—N/2 p=-N/2 q=—N/2
N-1

Z oxp []%(p NQ)
N/2 -1 N/2-1

NY Y S(

I=—N/2p=—N/2

N1T4 (81,82

NT;

A

52

(77)% (52 (75)

NT;

|

NT,

I—p
NT;

p
NT,

)5 (52) % ()

(B.8)

The above relationship shows that, when 1/T; > 4B, matched filtering WR(') with WSH()

is equivalent to the processing of |(R, Sy)|? as used in optimal detection and estimation.

B.2 Discrete Time-Frequency Correlation Function
Based Receiver

The realization of a discrete time-frequency correlation function based receiver can be
analyzed in a manner similar to that used in the time-domain analysis. First we derive the

relationship between Wy (-) and ¢ (-).

it l mk
l;) Ws, (kT,, NT. ) exp ( JQW—F)
1 Ny N l+p\ A (l—p .. pk mk
= 73 > { > S (NT )S (NT,) exp (szﬁ> exp( ]271'7)
s k=0 |p=—-N/2
l+m l—m
- ?1”351 ( NT, )S (NT,) (B.9)

186




where —N/2 < m < N/2 — 1. Hence,

Ngl {Z—: Wa ( l ) exp ( jQka)}exp (]2 ln)
89 - EYS T~
I=—N/2 $ NT, N N
= N exp ( ]27r ) s, ( 5 Nn; ) (B.10)

It follows that

N/2-1 Nj2-1 ]
Z Z ¢S1( S’NT)¢S2( S’NT)

k:—N/Zl——N/2
"N/2-1 N/2-1 {1 N-1 N/2-1

g e (nTs,FV_mi)exp( mgg.)

k=—N/21=~N/2 n=0 m=-N/2
1 N-1 N/2-1

mk . Ip
- exp (]ZWW> {N Z Z W52 (st, NT. ) exp (—jZWN>
k

p=0 ¢g=—N/2
- exp (1271'%)}

N-1 N/2-1

Y T W (nTs, NT)W* ( T, %) (B.11)

n=0 m=-N/2

For the same reason as in the discussion on the time-domain realization, we conclude that the

optimum receiver can be implemented in such a manner that it computes the inner product

of ¢5(-) with ¢z, (-) for N > 4T/T; and 1/Ts = 4B.
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